
The value of expression \[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\] is equal to
\[1){\text{ }}\sqrt 2 \]
\[2){\text{ }}\sqrt 3 \]
\[3){\text{ }}2\]
\[4){\text{ }}4\]
\[5){\text{ }}\sqrt 5 \]
Answer
504.3k+ views
Hint: We have to find the value of the given trigonometric expression\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]. We solve this using the formula of double angle of sin function . We should also have the knowledge of values for various angles of trigonometric functions . Firstly we find the value of the given trigonometric expression using the formula of sum of two angles of a sine function . Also , the conversion of an angle in terms of another trigonometric function .
Complete step-by-step answer:
Given :
We have to find the value of the expression \[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]
We know , that
\[cos{\text{ }}80^\circ {\text{ }} = {\text{ }}cos{\text{ }}\left( {90{\text{ }} - {\text{ }}10} \right)^\circ \]
The angle lies in the first quadrant and the value of the cosine function in the first quadrant is positive .
So ,
\[cos{\text{ }}80^\circ {\text{ }} = {\text{ }}sin{\text{ }}10^\circ \]
Similarly ,
\[sin{\text{ }}80^\circ {\text{ }} = {\text{ }}sin{\text{ }}\left( {90{\text{ }} - {\text{ }}10} \right)^\circ \]
The angle lies in the first quadrant and the value of the sine function in the first quadrant is positive .
So , \[sin{\text{ }}80^\circ = {\text{ }}cos{\text{ }}10^\circ \]
Now , the expression becomes
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\left( {\dfrac{1}{{sin{\text{ }}10^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{cos{\text{ }}10^\circ }}} \right)\]
Taking L.C.M. we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\dfrac{{\left[ {{\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\sqrt 3 {\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left[ {{\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}\]
Multiplying numerator and denominator by\[4\], we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\dfrac{{4{\text{ }} \times {\text{ }}\left[ {{\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\sqrt {3 \times } {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{4{\text{ }} \times {\text{ }}\left[ {{\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}\]
Simplifying , we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\dfrac{{\left[ {{\text{ }}\left( {\dfrac{1}{2}} \right){\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{2}} \right){\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left( {\dfrac{1}{4}} \right){\text{ }} \times \left[ {2{\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}\]
We know that \[sin{\text{ }}2x{\text{ }} = {\text{ }}2{\text{ }}sin{\text{ }}x{\text{ }} \times {\text{ }}cos{\text{ }}x\]
We also know that
\[cos{\text{ }}30^\circ {\text{ }} = {\text{ }}\dfrac{{\sqrt 3 }}{2}\]
\[sin{\text{ }}30^\circ {\text{ }} = {\text{ }}\dfrac{1}{2}\]
Using these values , we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\dfrac{{\left[ {{\text{ }}sin{\text{ }}30^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}cos{\text{ }}30^\circ {\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left[ {{\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }} \times {\text{ }}sin{\text{ }}20^\circ {\text{ }}} \right]}}\]
Also , the formula of difference of sin function is given as :
\[sin\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}sin{\text{ }}A{\text{ }} \times {\text{ }}cos{\text{ }}B{\text{ }} - {\text{ }}sin{\text{ }}B{\text{ }} \times {\text{ }}cos{\text{ }}A\]
Using this trigonometric formulas , we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = \dfrac{{sin{\text{ }}20^\circ }}{{\left[ {{\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }} \times {\text{ }}sin{\text{ }}20^\circ {\text{ }}} \right]}}\]
Cancelling the terms , we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}4\]
Thus the value of the expression is \[4\] .
Hence , the correct option is\[\left( 4 \right)\].
So, the correct answer is “Option 4”.
Note: The various trigonometric formulas we need to remember when by dividing or multiplying the given apply we are able to get a known trigonometric value are given as :
$sin{\text{ }}2x{\text{ }} = {\text{ }}2 \times {\text{ }}sin{\text{ }}x{\text{ }} \times {\text{ }}cos{\text{ }}x$
$cos2x = 2 \times {cos^2}x - 1 = 1 - 2 \times {sin^2}x$
$tan2x = \dfrac{{tan2x}}{{(1 - {tan^2}x)}}$
$sin3x = 3\sin x - 4{sin^3}x$
$cos3x = 4{cos^3}x - 3\cos x$
Complete step-by-step answer:
Given :
We have to find the value of the expression \[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]
We know , that
\[cos{\text{ }}80^\circ {\text{ }} = {\text{ }}cos{\text{ }}\left( {90{\text{ }} - {\text{ }}10} \right)^\circ \]
The angle lies in the first quadrant and the value of the cosine function in the first quadrant is positive .
So ,
\[cos{\text{ }}80^\circ {\text{ }} = {\text{ }}sin{\text{ }}10^\circ \]
Similarly ,
\[sin{\text{ }}80^\circ {\text{ }} = {\text{ }}sin{\text{ }}\left( {90{\text{ }} - {\text{ }}10} \right)^\circ \]
The angle lies in the first quadrant and the value of the sine function in the first quadrant is positive .
So , \[sin{\text{ }}80^\circ = {\text{ }}cos{\text{ }}10^\circ \]
Now , the expression becomes
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\left( {\dfrac{1}{{sin{\text{ }}10^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{cos{\text{ }}10^\circ }}} \right)\]
Taking L.C.M. we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\dfrac{{\left[ {{\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\sqrt 3 {\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left[ {{\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}\]
Multiplying numerator and denominator by\[4\], we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\dfrac{{4{\text{ }} \times {\text{ }}\left[ {{\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\sqrt {3 \times } {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{4{\text{ }} \times {\text{ }}\left[ {{\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}\]
Simplifying , we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\dfrac{{\left[ {{\text{ }}\left( {\dfrac{1}{2}} \right){\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{2}} \right){\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left( {\dfrac{1}{4}} \right){\text{ }} \times \left[ {2{\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }}} \right]}}\]
We know that \[sin{\text{ }}2x{\text{ }} = {\text{ }}2{\text{ }}sin{\text{ }}x{\text{ }} \times {\text{ }}cos{\text{ }}x\]
We also know that
\[cos{\text{ }}30^\circ {\text{ }} = {\text{ }}\dfrac{{\sqrt 3 }}{2}\]
\[sin{\text{ }}30^\circ {\text{ }} = {\text{ }}\dfrac{1}{2}\]
Using these values , we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}\dfrac{{\left[ {{\text{ }}sin{\text{ }}30^\circ {\text{ }} \times {\text{ }}cos{\text{ }}10^\circ {\text{ }} - {\text{ }}cos{\text{ }}30^\circ {\text{ }} \times {\text{ }}sin{\text{ }}10^\circ {\text{ }}} \right]}}{{\left[ {{\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }} \times {\text{ }}sin{\text{ }}20^\circ {\text{ }}} \right]}}\]
Also , the formula of difference of sin function is given as :
\[sin\left( {A{\text{ }} - {\text{ }}B} \right){\text{ }} = {\text{ }}sin{\text{ }}A{\text{ }} \times {\text{ }}cos{\text{ }}B{\text{ }} - {\text{ }}sin{\text{ }}B{\text{ }} \times {\text{ }}cos{\text{ }}A\]
Using this trigonometric formulas , we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = \dfrac{{sin{\text{ }}20^\circ }}{{\left[ {{\text{ }}\left( {\dfrac{1}{4}} \right){\text{ }} \times {\text{ }}sin{\text{ }}20^\circ {\text{ }}} \right]}}\]
Cancelling the terms , we get
\[\left( {\dfrac{1}{{cos{\text{ }}80^\circ }}} \right){\text{ }} - {\text{ }}\left( {\dfrac{{\sqrt 3 }}{{sin{\text{ }}80^\circ }}} \right)\]\[ = {\text{ }}4\]
Thus the value of the expression is \[4\] .
Hence , the correct option is\[\left( 4 \right)\].
So, the correct answer is “Option 4”.
Note: The various trigonometric formulas we need to remember when by dividing or multiplying the given apply we are able to get a known trigonometric value are given as :
$sin{\text{ }}2x{\text{ }} = {\text{ }}2 \times {\text{ }}sin{\text{ }}x{\text{ }} \times {\text{ }}cos{\text{ }}x$
$cos2x = 2 \times {cos^2}x - 1 = 1 - 2 \times {sin^2}x$
$tan2x = \dfrac{{tan2x}}{{(1 - {tan^2}x)}}$
$sin3x = 3\sin x - 4{sin^3}x$
$cos3x = 4{cos^3}x - 3\cos x$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

