
The value of ${{e}^{{{\log }_{10}}\tan 1+{{\log }_{10}}\tan 2+{{\log }_{10}}\tan 3+.......+{{\log }_{10}}\tan 89}}$ is
(a) 0
(b) 1
(c) $\dfrac{1}{e}$
(d) $e$
Answer
602.1k+ views
Hint: Convert the angles of tangent beyond ${{45}^{\circ }}$ into angles of cotangent using the complementary angle transformation hence, pair first logarithmic term with the last, second logarithmic term with second last and so on. Use the product rule of logarithm to convert into a single term.
Complete step-by-step answer:
Let us come to the question. Let the value of the given expression be ‘$E$’. Therefore,
\[E={{e}^{{{\log }_{10}}\tan 1+{{\log }_{10}}\tan 2+{{\log }_{10}}\tan 3+.......+{{\log }_{10}}\tan 89}}\]
Now, changing the angles of tangent after ${{45}^{\circ }}$ into angles of cotangent using complementary angle rule: $\tan \theta =\cot \left( {{90}^{\circ }}-\theta \right)$, we get,
$\begin{align}
& E={{e}^{{{\log }_{10}}\tan 1+{{\log }_{10}}\tan 2+{{\log }_{10}}\tan 3+.....+{{\log }_{10}}\tan 45+{{\log }_{10}}\cot (90-46)+{{\log }_{10}}\cot (90-47)+......+{{\log }_{10}}\cot (90-89)}} \\
& \text{ }={{e}^{{{\log }_{10}}\tan 1+{{\log }_{10}}\tan 2+{{\log }_{10}}\tan 3+.....+{{\log }_{10}}\tan 45+{{\log }_{10}}\cot 44+{{\log }_{10}}\cot 43+......+{{\log }_{10}}\cot 1}} \\
\end{align}$
Now, pairing the logarithmic terms having same angle of tan and cot, we have,
$E={{e}^{({{\log }_{10}}\tan 1+{{\log }_{10}}\cot 1)+({{\log }_{10}}\tan 2+{{\log }_{10}}\cot 2)+({{\log }_{10}}\tan 3+{{\log }_{10}}\cot 3)+........+({{\log }_{10}}\tan 44+{{\log }_{10}}\cot 44)+{{\log }_{10}}\tan 45}}$
Here, we will apply the product rule of logs. It says that logarithm of a product is equal to a sum of logarithms. Mathematically, ${{\log }_{a}}(m+n)={{\log }_{a}}mn$. Therefore,
$E={{e}^{({{\log }_{10}}\tan 1\times \cot 1)+({{\log }_{10}}\tan 2\times \cot 2)+({{\log }_{10}}\tan 3\times \cot 3)+........+({{\log }_{10}}\tan 44\times \cot 44)+{{\log }_{10}}\tan 45}}$
There is a trigonometric identity that: product of tangent of an angle and co-tangent of the same angle results in 1. Mathematically, $\tan \theta \times \cot \theta =1$. Also, we know that, $\tan {{45}^{\circ }}=1$. Using these relations, we have,
$E={{e}^{{{\log }_{10}}1+{{\log }_{10}}1+{{\log }_{10}}1+........+{{\log }_{10}}1}}$
We know that, ${{\log }_{a}}1=0$.
$\begin{align}
& \therefore E={{e}^{0+0+0+.....+0}} \\
& \text{ }={{e}^{0}} \\
& \text{ }=1 \\
\end{align}$
Hence, option (b) is the correct answer.
Note: Here, all the angles are paired except ${{45}^{\circ }}$ because there are 89 terms of tangent of angle and 44 are paired, leaving 45th angle which is ${{45}^{\circ }}$. It is important to convert the tangents into the cotangents because only then we can apply the product rule in logarithms. Note that the value of $\log 1=0$, provided base of the log is defined.
Complete step-by-step answer:
Let us come to the question. Let the value of the given expression be ‘$E$’. Therefore,
\[E={{e}^{{{\log }_{10}}\tan 1+{{\log }_{10}}\tan 2+{{\log }_{10}}\tan 3+.......+{{\log }_{10}}\tan 89}}\]
Now, changing the angles of tangent after ${{45}^{\circ }}$ into angles of cotangent using complementary angle rule: $\tan \theta =\cot \left( {{90}^{\circ }}-\theta \right)$, we get,
$\begin{align}
& E={{e}^{{{\log }_{10}}\tan 1+{{\log }_{10}}\tan 2+{{\log }_{10}}\tan 3+.....+{{\log }_{10}}\tan 45+{{\log }_{10}}\cot (90-46)+{{\log }_{10}}\cot (90-47)+......+{{\log }_{10}}\cot (90-89)}} \\
& \text{ }={{e}^{{{\log }_{10}}\tan 1+{{\log }_{10}}\tan 2+{{\log }_{10}}\tan 3+.....+{{\log }_{10}}\tan 45+{{\log }_{10}}\cot 44+{{\log }_{10}}\cot 43+......+{{\log }_{10}}\cot 1}} \\
\end{align}$
Now, pairing the logarithmic terms having same angle of tan and cot, we have,
$E={{e}^{({{\log }_{10}}\tan 1+{{\log }_{10}}\cot 1)+({{\log }_{10}}\tan 2+{{\log }_{10}}\cot 2)+({{\log }_{10}}\tan 3+{{\log }_{10}}\cot 3)+........+({{\log }_{10}}\tan 44+{{\log }_{10}}\cot 44)+{{\log }_{10}}\tan 45}}$
Here, we will apply the product rule of logs. It says that logarithm of a product is equal to a sum of logarithms. Mathematically, ${{\log }_{a}}(m+n)={{\log }_{a}}mn$. Therefore,
$E={{e}^{({{\log }_{10}}\tan 1\times \cot 1)+({{\log }_{10}}\tan 2\times \cot 2)+({{\log }_{10}}\tan 3\times \cot 3)+........+({{\log }_{10}}\tan 44\times \cot 44)+{{\log }_{10}}\tan 45}}$
There is a trigonometric identity that: product of tangent of an angle and co-tangent of the same angle results in 1. Mathematically, $\tan \theta \times \cot \theta =1$. Also, we know that, $\tan {{45}^{\circ }}=1$. Using these relations, we have,
$E={{e}^{{{\log }_{10}}1+{{\log }_{10}}1+{{\log }_{10}}1+........+{{\log }_{10}}1}}$
We know that, ${{\log }_{a}}1=0$.
$\begin{align}
& \therefore E={{e}^{0+0+0+.....+0}} \\
& \text{ }={{e}^{0}} \\
& \text{ }=1 \\
\end{align}$
Hence, option (b) is the correct answer.
Note: Here, all the angles are paired except ${{45}^{\circ }}$ because there are 89 terms of tangent of angle and 44 are paired, leaving 45th angle which is ${{45}^{\circ }}$. It is important to convert the tangents into the cotangents because only then we can apply the product rule in logarithms. Note that the value of $\log 1=0$, provided base of the log is defined.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

