
The value of \[\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] is: -
(a) \[{{x}^{2}}\]
(b) \[{{x}^{a+b+c}}\]
(c) \[{{x}^{abc}}\]
(d) \[{{x}^{0}}\]
Answer
572.7k+ views
Hint: Consider the numerator of the given expression and use the formula: - \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], to simplify the numerator. Now, consider the denominator and apply the formula: - \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\] to simplify the denominator. Once both numerator and denominator are simplified, apply the formula, \[\dfrac{{{p}^{m}}}{{{p}^{n}}}={{p}^{m-n}}\] to get the answer.
Complete step-by-step solution
Here, we have been provided with the expression: - \[\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] and we have to find its value. Let us assume its value as ‘E’.
\[\Rightarrow E=\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] - (1)
Now, considering the numerator of expression (1), we have,
\[\Rightarrow \] Numerator = \[{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}\]
We know that, \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], therefore we have,
\[\Rightarrow \] Numerator = \[{{x}^{a+b+b+c+c+a}}\]
\[\Rightarrow \] Numerator = \[{{x}^{2a+2b+2c}}\]
Now, considering the denominator of expression (1), we have,
\[\Rightarrow \] Denominator = \[{{\left( {{x}^{a+b+c}} \right)}^{2}}\]
Now, applying the formula, \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\], we get,
\[\Rightarrow \] Denominator = \[{{x}^{\left( a+b+c \right)\times 2}}\]
\[\Rightarrow \] Denominator = \[{{x}^{2\left( a+b+c \right)}}\]
Therefore, substituting the obtained values of numerator and denominator in expression (1), we have,
\[\Rightarrow E=\dfrac{{{x}^{2\left( a+b+c \right)}}}{{{x}^{2\left( a+b+c \right)}}}\]
Applying the formula, \[\dfrac{{{p}^{m}}}{{{p}^{n}}}={{p}^{m-n}}\], we get,
\[\Rightarrow E={{x}^{2\left( a+b+c \right)-2\left( a+b+c \right)}}\]
Cancelling the like terms, we get,
\[\Rightarrow E={{x}^{0}}\]
Hence, option (d) is the correct answer.
Note: One may note that we can solve the question by only simplifying either numerator or denominator but here we have simplified both of them so that we can see the use of all the important formulas of the topic ‘exponents and powers’. We must remember some basic formulas of the topic ‘exponents and powers’ like: - \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], \[{{p}^{m}}\div {{p}^{n}}={{p}^{m-n}}\] and \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\]. These formulas are used everywhere.
Complete step-by-step solution
Here, we have been provided with the expression: - \[\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] and we have to find its value. Let us assume its value as ‘E’.
\[\Rightarrow E=\dfrac{{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}}{{{\left( {{x}^{a}}.{{x}^{b}}.{{x}^{c}} \right)}^{2}}}\] - (1)
Now, considering the numerator of expression (1), we have,
\[\Rightarrow \] Numerator = \[{{x}^{a+b}}.{{x}^{b+c}}.{{x}^{c+a}}\]
We know that, \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], therefore we have,
\[\Rightarrow \] Numerator = \[{{x}^{a+b+b+c+c+a}}\]
\[\Rightarrow \] Numerator = \[{{x}^{2a+2b+2c}}\]
Now, considering the denominator of expression (1), we have,
\[\Rightarrow \] Denominator = \[{{\left( {{x}^{a+b+c}} \right)}^{2}}\]
Now, applying the formula, \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\], we get,
\[\Rightarrow \] Denominator = \[{{x}^{\left( a+b+c \right)\times 2}}\]
\[\Rightarrow \] Denominator = \[{{x}^{2\left( a+b+c \right)}}\]
Therefore, substituting the obtained values of numerator and denominator in expression (1), we have,
\[\Rightarrow E=\dfrac{{{x}^{2\left( a+b+c \right)}}}{{{x}^{2\left( a+b+c \right)}}}\]
Applying the formula, \[\dfrac{{{p}^{m}}}{{{p}^{n}}}={{p}^{m-n}}\], we get,
\[\Rightarrow E={{x}^{2\left( a+b+c \right)-2\left( a+b+c \right)}}\]
Cancelling the like terms, we get,
\[\Rightarrow E={{x}^{0}}\]
Hence, option (d) is the correct answer.
Note: One may note that we can solve the question by only simplifying either numerator or denominator but here we have simplified both of them so that we can see the use of all the important formulas of the topic ‘exponents and powers’. We must remember some basic formulas of the topic ‘exponents and powers’ like: - \[{{p}^{m}}\times {{p}^{n}}={{p}^{m+n}}\], \[{{p}^{m}}\div {{p}^{n}}={{p}^{m-n}}\] and \[{{\left( {{p}^{m}} \right)}^{n}}={{p}^{m\times n}}\]. These formulas are used everywhere.
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Trending doubts
The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

How many lines of symmetry does a regular pentagon-class-7-maths-CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

The plural of Chief is Chieves A True B False class 7 english CBSE


