
The value of determinant$\left( {\begin{array}{*{20}{c}}
{19}&6&7 \\
{21}&3&{15} \\
{28}&{11}&6
\end{array}} \right)$is:
$(a)$150
$(b)$-110
$(c)$0
$(d)$None of these
Answer
519.6k+ views
Hint: In the above given question, we are asked to find the determinant of the given matrix. The determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the given matrix.
Let us assume the given matrix to be:
A$ = \left( {\begin{array}{*{20}{c}}
{19}&6&7 \\
{21}&3&{15} \\
{28}&{11}&6
\end{array}} \right)$
Now, we know that the determinant of a matrix ${\text{A}}$ is given as$\left| {\text{A}} \right|$.
If${\text{A = }}\left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
then, \[\left| {\text{A}} \right|{\text{ = }}{a_{11}}\left( {\begin{array}{*{20}{c}}
{{a_{22}}}&{{a_{23}}} \\
{{a_{32}}}&{{a_{33}}}
\end{array}} \right) - {a_{12}}\left( {\begin{array}{*{20}{c}}
{{a_{21}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{33}}}
\end{array}} \right) + {a_{13}}\left( {\begin{array}{*{20}{c}}
{{a_{21}}}&{{a_{22}}} \\
{{a_{31}}}&{{a_{32}}}
\end{array}} \right)\] … (1)
Therefore, we using the equation (1), we get
\[\left| {\text{A}} \right|{\text{ = 19}}\left( {\begin{array}{*{20}{c}}
3&{15} \\
{11}&6
\end{array}} \right) - 6\left( {\begin{array}{*{20}{c}}
{21}&{15} \\
{28}&6
\end{array}} \right) + 7\left( {\begin{array}{*{20}{c}}
{21}&3 \\
{28}&{11}
\end{array}} \right)\]
$ = 19(3 \times 6 - 11 \times 15) - 6(21 \times 6 - 15 \times 28) + 7(21 \times 11 - 3 \times
28)$
$ = 19(18 - 165) - 6(126 - 420) + 7(231 - 84)$
$ = 19( - 147) - 6( - 294) + 7(147)$
$ = - 2739 + 1764 + 1029$
$ = - 2739 + 2739$
$ = 0$
Hence, the determinant of the given matrix is option$(c)$ 0.
Note: When we face such a type of problem, the key point is to have a good understanding of the matrices and their properties. Then, put the values from the given matrix in the formula for calculating the determinant directly and further evaluate it for obtaining the correct solution.
Let us assume the given matrix to be:
A$ = \left( {\begin{array}{*{20}{c}}
{19}&6&7 \\
{21}&3&{15} \\
{28}&{11}&6
\end{array}} \right)$
Now, we know that the determinant of a matrix ${\text{A}}$ is given as$\left| {\text{A}} \right|$.
If${\text{A = }}\left( {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right)$
then, \[\left| {\text{A}} \right|{\text{ = }}{a_{11}}\left( {\begin{array}{*{20}{c}}
{{a_{22}}}&{{a_{23}}} \\
{{a_{32}}}&{{a_{33}}}
\end{array}} \right) - {a_{12}}\left( {\begin{array}{*{20}{c}}
{{a_{21}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{33}}}
\end{array}} \right) + {a_{13}}\left( {\begin{array}{*{20}{c}}
{{a_{21}}}&{{a_{22}}} \\
{{a_{31}}}&{{a_{32}}}
\end{array}} \right)\] … (1)
Therefore, we using the equation (1), we get
\[\left| {\text{A}} \right|{\text{ = 19}}\left( {\begin{array}{*{20}{c}}
3&{15} \\
{11}&6
\end{array}} \right) - 6\left( {\begin{array}{*{20}{c}}
{21}&{15} \\
{28}&6
\end{array}} \right) + 7\left( {\begin{array}{*{20}{c}}
{21}&3 \\
{28}&{11}
\end{array}} \right)\]
$ = 19(3 \times 6 - 11 \times 15) - 6(21 \times 6 - 15 \times 28) + 7(21 \times 11 - 3 \times
28)$
$ = 19(18 - 165) - 6(126 - 420) + 7(231 - 84)$
$ = 19( - 147) - 6( - 294) + 7(147)$
$ = - 2739 + 1764 + 1029$
$ = - 2739 + 2739$
$ = 0$
Hence, the determinant of the given matrix is option$(c)$ 0.
Note: When we face such a type of problem, the key point is to have a good understanding of the matrices and their properties. Then, put the values from the given matrix in the formula for calculating the determinant directly and further evaluate it for obtaining the correct solution.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
