
The value of \[\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right)\times \sin \left( \dfrac{\pi }{{{2}^{10}}} \right)\] is
(a) $\dfrac{1}{256}$
(b) $\dfrac{1}{2}$
(c) $\dfrac{1}{512}$
(d) $\dfrac{1}{1024}$
Answer
587.1k+ views
Hint: We have to find the value of \[\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\sin \left( \dfrac{\pi }{{{2}^{10}}} \right)\]
We have $\cos \theta .\cos \left( 2\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$
So we will take $\theta =\dfrac{\pi }{{{2}^{10}}}$ and then our original equation will become as follows. \[\cos \theta .\cos \left( 2\theta \right)......\cos \left( {{2}^{8}}\theta \right)\times \sin \left( \theta \right)\] , now we will apply the above mentioned rule in order to simplify $\cos $ terms. And at last we will take back $\theta $ as $\dfrac{\pi }{{{2}^{10}}}$ and simplify it to get our solution.
Complete step-by-step answer:
We have been asked in the given question that we have to find the value of the expression, that is, \[\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\sin \left( \dfrac{\pi }{{{2}^{10}}} \right)\]
And we know the relation that,
$\cos \theta .\cos \left( 2\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$
Now Let us consider the value of the term, $\dfrac{\pi }{{{2}^{10}}}$ as $\theta $
$\Rightarrow \theta =\dfrac{\pi }{{{2}^{10}}}$
Then $\dfrac{\pi }{{{2}^{9}}}=\dfrac{\pi }{{{2}^{10}}}\times 2$
$\text{ }\dfrac{\pi }{{{2}^{9}}}=2\theta \text{ }\left[ as\text{ }\theta =\dfrac{\pi }{{{2}^{10}}} \right]$
Similarly we will get,
$\begin{align}
& \dfrac{\pi }{{{2}^{8}}}=\dfrac{\pi }{{{2}^{10}}}\times {{2}^{2}} \\
& \text{ }={{2}^{2}}\theta \\
\end{align}$
And so on upto,
$\dfrac{\pi }{{{2}^{2}}}=\dfrac{\pi }{{{2}^{10}}}\times {{2}^{8}}\text{ }\left[ as\text{ }{{2}^{10-8}}={{2}^{2}} \right]$
So, we will get,
$\dfrac{\pi }{{{2}^{2}}}={{2}^{8}}\theta $
So our equation which was given in the question that is,
\[\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\sin \left( \dfrac{\pi }{{{2}^{10}}} \right)\]
Becomes as follows.
\[\cos \left( {{2}^{8}}\theta \right).\cos \left( {{2}^{7}}\theta \right).\cos \left( {{2}^{6}}\theta \right)........\cos \left( \theta \right).\sin \theta \]
And on rearranging the above expression a little bit we will get,
\[\cos \left( \theta \right).\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).........\cos \left( {{2}^{8}}\theta \right).\sin \theta ----\left( 1 \right)\]
Now we know the relation that,
$\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$
So, on applying this,
\[\cos \theta .\cos \left( 2\theta \right)......\cos \left( {{2}^{8}}\theta \right)\]
We have $n-1=8\text{ }\Rightarrow n=8+1=9$
So we will get,
\[\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right)=\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}\left( \sin \theta \right)}\]
Now, on putting this value in $\left( 1 \right)$ we will get,
\[\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right).\sin \theta =\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}\left( \sin \theta \right)}\times \sin \theta \]
So on simplifying it further we will get,
\[\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right).\sin \theta =\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}}\]
Now, on putting $\theta $ back as $\dfrac{\pi }{{{2}^{10}}}$ , we will get the equation as,
\[\begin{align}
& \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{\sin \left( {{2}^{9}}\dfrac{\pi }{{{2}^{10}}} \right)}{{{2}^{9}}} \\
& \Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{\sin \left( \dfrac{\pi }{2} \right)}{{{2}^{9}}} \\
\end{align}\]
We know that, \[\sin \left( \dfrac{\pi }{2} \right)=1\] so we will get,
\[\Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{1}{{{2}^{9}}}\]
\[\Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{1}{512}\]
Hence we get that the correct option is option (c), that is, \[\dfrac{1}{512}\]
So, the correct answer is “Option c”.
Note: We have the equation,
$\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$
So, errors like, taking $n-1$ as $n$ usually can happen while solving this question.
Apply this on,
\[\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right)\]
We will have ${{2}^{n-1}}={{2}^{8}}$
$\begin{align}
& \text{ }\Rightarrow n-1=8 \\
& \text{ }\Rightarrow n=8+1 \\
& \text{ }=9 \\
\end{align}$
Also, mistakes like, taking $n$ directly as $8$ will lead to getting an incorrect solution.
We have $\cos \theta .\cos \left( 2\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$
So we will take $\theta =\dfrac{\pi }{{{2}^{10}}}$ and then our original equation will become as follows. \[\cos \theta .\cos \left( 2\theta \right)......\cos \left( {{2}^{8}}\theta \right)\times \sin \left( \theta \right)\] , now we will apply the above mentioned rule in order to simplify $\cos $ terms. And at last we will take back $\theta $ as $\dfrac{\pi }{{{2}^{10}}}$ and simplify it to get our solution.
Complete step-by-step answer:
We have been asked in the given question that we have to find the value of the expression, that is, \[\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\sin \left( \dfrac{\pi }{{{2}^{10}}} \right)\]
And we know the relation that,
$\cos \theta .\cos \left( 2\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$
Now Let us consider the value of the term, $\dfrac{\pi }{{{2}^{10}}}$ as $\theta $
$\Rightarrow \theta =\dfrac{\pi }{{{2}^{10}}}$
Then $\dfrac{\pi }{{{2}^{9}}}=\dfrac{\pi }{{{2}^{10}}}\times 2$
$\text{ }\dfrac{\pi }{{{2}^{9}}}=2\theta \text{ }\left[ as\text{ }\theta =\dfrac{\pi }{{{2}^{10}}} \right]$
Similarly we will get,
$\begin{align}
& \dfrac{\pi }{{{2}^{8}}}=\dfrac{\pi }{{{2}^{10}}}\times {{2}^{2}} \\
& \text{ }={{2}^{2}}\theta \\
\end{align}$
And so on upto,
$\dfrac{\pi }{{{2}^{2}}}=\dfrac{\pi }{{{2}^{10}}}\times {{2}^{8}}\text{ }\left[ as\text{ }{{2}^{10-8}}={{2}^{2}} \right]$
So, we will get,
$\dfrac{\pi }{{{2}^{2}}}={{2}^{8}}\theta $
So our equation which was given in the question that is,
\[\cos \left( \dfrac{\pi }{{{2}^{2}}} \right).\cos \left( \dfrac{\pi }{{{2}^{3}}} \right)......\cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\sin \left( \dfrac{\pi }{{{2}^{10}}} \right)\]
Becomes as follows.
\[\cos \left( {{2}^{8}}\theta \right).\cos \left( {{2}^{7}}\theta \right).\cos \left( {{2}^{6}}\theta \right)........\cos \left( \theta \right).\sin \theta \]
And on rearranging the above expression a little bit we will get,
\[\cos \left( \theta \right).\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).........\cos \left( {{2}^{8}}\theta \right).\sin \theta ----\left( 1 \right)\]
Now we know the relation that,
$\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$
So, on applying this,
\[\cos \theta .\cos \left( 2\theta \right)......\cos \left( {{2}^{8}}\theta \right)\]
We have $n-1=8\text{ }\Rightarrow n=8+1=9$
So we will get,
\[\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right)=\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}\left( \sin \theta \right)}\]
Now, on putting this value in $\left( 1 \right)$ we will get,
\[\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right).\sin \theta =\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}\left( \sin \theta \right)}\times \sin \theta \]
So on simplifying it further we will get,
\[\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right).\sin \theta =\dfrac{\sin \left( {{2}^{9}}\theta \right)}{{{2}^{9}}}\]
Now, on putting $\theta $ back as $\dfrac{\pi }{{{2}^{10}}}$ , we will get the equation as,
\[\begin{align}
& \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{\sin \left( {{2}^{9}}\dfrac{\pi }{{{2}^{10}}} \right)}{{{2}^{9}}} \\
& \Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{\sin \left( \dfrac{\pi }{2} \right)}{{{2}^{9}}} \\
\end{align}\]
We know that, \[\sin \left( \dfrac{\pi }{2} \right)=1\] so we will get,
\[\Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{1}{{{2}^{9}}}\]
\[\Rightarrow \cos \left( \dfrac{\pi }{{{2}^{10}}} \right).\cos \left( 2\dfrac{\pi }{{{2}^{10}}} \right).\cos \left( {{2}^{2}}\dfrac{\pi }{{{2}^{10}}} \right).....\cos \left( {{2}^{8}}\dfrac{\pi }{{{2}^{10}}} \right).\sin \dfrac{\pi }{{{2}^{10}}}=\dfrac{1}{512}\]
Hence we get that the correct option is option (c), that is, \[\dfrac{1}{512}\]
So, the correct answer is “Option c”.
Note: We have the equation,
$\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{n-1}}\theta \right)=\dfrac{\sin \left( {{2}^{n}}\theta \right)}{{{2}^{n}}\sin \theta }$
So, errors like, taking $n-1$ as $n$ usually can happen while solving this question.
Apply this on,
\[\cos \theta .\cos \left( 2\theta \right).\cos \left( {{2}^{2}}\theta \right).....\cos \left( {{2}^{8}}\theta \right)\]
We will have ${{2}^{n-1}}={{2}^{8}}$
$\begin{align}
& \text{ }\Rightarrow n-1=8 \\
& \text{ }\Rightarrow n=8+1 \\
& \text{ }=9 \\
\end{align}$
Also, mistakes like, taking $n$ directly as $8$ will lead to getting an incorrect solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

10 examples of friction in our daily life

