
The value of $\cos {{12}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{72}^{{}^\circ }}\times cos{{96}^{{}^\circ }}$ equals
(A) $-\dfrac{1}{{{2}^{6}}}$
(B) $\dfrac{1}{{{2}^{8}}}$
(C) $\dfrac{1}{{{2}^{7}}}$
(D) $-\dfrac{1}{{{2}^{7}}}$
Answer
615.9k+ views
Hint: We will use the formula $2\times \sin \theta \times \cos \theta =\sin 2\theta $ to evaluate the whole expression. Also, we will use directly the values of following cosine angles, $\cos {{36}^{{}^\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}$ and $\cos {{72}^{{}^\circ }}=\dfrac{\left( \sqrt{5}+1 \right)}{4}$.
Complete step by step answer:
In the given question, we have to find the values of the expression $\cos {{12}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{72}^{{}^\circ }}\times cos{{96}^{{}^\circ }}$. We can write the equation as follows by just rearranging the cosine terms so as to get better view and the path of next procedure \[\cos {{12}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}\].
Now we multiply both numerator and denominator by $2\times \sin {{12}^{{}^\circ }}$ to get the modified equation as $\dfrac{2\times \sin {{12}^{{}^\circ }}\times \cos {{12}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\times \sin {{12}^{{}^\circ }}}$. We know that $2\times \sin \theta \times \cos \theta =\sin 2\theta $, therefore applying this formula we get $2\times \sin {{12}^{{}^\circ }}\times \cos {{12}^{{}^\circ }}=\sin {{24}^{{}^\circ }}$, putting in the above modified equation, we get $\dfrac{\sin {{24}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\sin {{12}^{{}^\circ }}}$. Now, multiplying the numerator and denominator by 2, we get $\dfrac{2\times \sin {{24}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\times 2\times \sin {{12}^{{}^\circ }}}$.
Again using the formulae $2\times \sin \theta \times \cos \theta =\sin 2\theta $, we get $2\times \sin {{24}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}=\sin {{48}^{{}^\circ }}$, Putting it in main equation we get, $\dfrac{\sin {{48}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{4\times \sin {{12}^{{}^\circ }}}$. Similarly, we multiply both numerator and denominator by a factor 2, we get equation as $\dfrac{2\times \sin {{48}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\times 4\times \sin {{12}^{{}^\circ }}}$. Again we use the formulae $2\times \sin \theta \times \cos \theta =\sin 2\theta $, we get $2\times \sin {{48}^{{}^\circ }}\times \cos {{48}^{{}^\circ }}=\sin {{96}^{{}^\circ }}$, Putting it in main equation we get, $\dfrac{\sin {{96}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{8\times \sin {{12}^{{}^\circ }}}$.
Now, again we multiply both numerator and denominator by a factor 2, we get equation as $\dfrac{2\times \sin {{96}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\times 8\times \sin {{12}^{{}^\circ }}}$. Again we use the formulae $2\times \sin \theta \times \cos \theta =\sin 2\theta $, we get $2\times \sin {{96}^{{}^\circ }}\times \cos {{96}^{{}^\circ }}=\sin {{192}^{{}^\circ }}$, Putting it in main equation we get, $\dfrac{\sin {{192}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{16\times \sin {{12}^{{}^\circ }}}$. Now we can write $\sin {{192}^{{}^\circ }}$ as $\sin \left( {{180}^{{}^\circ }}+{{12}^{{}^\circ }} \right)=-\sin \left( {{12}^{{}^\circ }} \right)$. Putting this value in the equation $\dfrac{\sin {{192}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{16\times \sin {{12}^{{}^\circ }}}$ we get, $\dfrac{-\sin {{12}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{16\times \sin {{12}^{{}^\circ }}}$, cancelling the sine term $\sin {{12}^{{}^\circ }}$ from numerator and denominator to get the remaining equation as $\dfrac{-cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{16}$.
Putting the values of $\cos {{36}^{{}^\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}$ and $\cos {{72}^{{}^\circ }}=\dfrac{\left( \sqrt{5}+1 \right)}{4}$ in the equation we get $\dfrac{-1}{16}\times \left( \dfrac{\left( \sqrt{5}-1 \right)}{4} \right)\times \left( \dfrac{\left( \sqrt{5}+1 \right)}{4} \right)$ which is equal to $\dfrac{-1}{16}\times \dfrac{1}{16}\left( {{\left( \sqrt{5} \right)}^{2}}-{{\left( 1 \right)}^{2}} \right)$ = $-\dfrac{1}{256}\times (5-1)=-\dfrac{4}{256}=-\dfrac{1}{64}=-\dfrac{1}{{{2}^{6}}}$. Therefore, the correct answer is option (a).
Note: Student may not separate the values, $\cos {{36}^{{}^\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}$ and $\cos {{72}^{{}^\circ }}=\dfrac{\left( \sqrt{5}+1 \right)}{4}$, if they do not know the values of these angles. As a result it will increase their efforts to solve the same question. It is required for the students to memorize the standard values of some of the angles like involved here.
Complete step by step answer:
In the given question, we have to find the values of the expression $\cos {{12}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{72}^{{}^\circ }}\times cos{{96}^{{}^\circ }}$. We can write the equation as follows by just rearranging the cosine terms so as to get better view and the path of next procedure \[\cos {{12}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}\].
Now we multiply both numerator and denominator by $2\times \sin {{12}^{{}^\circ }}$ to get the modified equation as $\dfrac{2\times \sin {{12}^{{}^\circ }}\times \cos {{12}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\times \sin {{12}^{{}^\circ }}}$. We know that $2\times \sin \theta \times \cos \theta =\sin 2\theta $, therefore applying this formula we get $2\times \sin {{12}^{{}^\circ }}\times \cos {{12}^{{}^\circ }}=\sin {{24}^{{}^\circ }}$, putting in the above modified equation, we get $\dfrac{\sin {{24}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\sin {{12}^{{}^\circ }}}$. Now, multiplying the numerator and denominator by 2, we get $\dfrac{2\times \sin {{24}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\times 2\times \sin {{12}^{{}^\circ }}}$.
Again using the formulae $2\times \sin \theta \times \cos \theta =\sin 2\theta $, we get $2\times \sin {{24}^{{}^\circ }}\times \cos {{24}^{{}^\circ }}=\sin {{48}^{{}^\circ }}$, Putting it in main equation we get, $\dfrac{\sin {{48}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{4\times \sin {{12}^{{}^\circ }}}$. Similarly, we multiply both numerator and denominator by a factor 2, we get equation as $\dfrac{2\times \sin {{48}^{{}^\circ }}\times cos{{48}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\times 4\times \sin {{12}^{{}^\circ }}}$. Again we use the formulae $2\times \sin \theta \times \cos \theta =\sin 2\theta $, we get $2\times \sin {{48}^{{}^\circ }}\times \cos {{48}^{{}^\circ }}=\sin {{96}^{{}^\circ }}$, Putting it in main equation we get, $\dfrac{\sin {{96}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{8\times \sin {{12}^{{}^\circ }}}$.
Now, again we multiply both numerator and denominator by a factor 2, we get equation as $\dfrac{2\times \sin {{96}^{{}^\circ }}\times cos{{96}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{2\times 8\times \sin {{12}^{{}^\circ }}}$. Again we use the formulae $2\times \sin \theta \times \cos \theta =\sin 2\theta $, we get $2\times \sin {{96}^{{}^\circ }}\times \cos {{96}^{{}^\circ }}=\sin {{192}^{{}^\circ }}$, Putting it in main equation we get, $\dfrac{\sin {{192}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{16\times \sin {{12}^{{}^\circ }}}$. Now we can write $\sin {{192}^{{}^\circ }}$ as $\sin \left( {{180}^{{}^\circ }}+{{12}^{{}^\circ }} \right)=-\sin \left( {{12}^{{}^\circ }} \right)$. Putting this value in the equation $\dfrac{\sin {{192}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{16\times \sin {{12}^{{}^\circ }}}$ we get, $\dfrac{-\sin {{12}^{{}^\circ }}\times cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{16\times \sin {{12}^{{}^\circ }}}$, cancelling the sine term $\sin {{12}^{{}^\circ }}$ from numerator and denominator to get the remaining equation as $\dfrac{-cos{{36}^{{}^\circ }}\times cos{{72}^{{}^\circ }}}{16}$.
Putting the values of $\cos {{36}^{{}^\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}$ and $\cos {{72}^{{}^\circ }}=\dfrac{\left( \sqrt{5}+1 \right)}{4}$ in the equation we get $\dfrac{-1}{16}\times \left( \dfrac{\left( \sqrt{5}-1 \right)}{4} \right)\times \left( \dfrac{\left( \sqrt{5}+1 \right)}{4} \right)$ which is equal to $\dfrac{-1}{16}\times \dfrac{1}{16}\left( {{\left( \sqrt{5} \right)}^{2}}-{{\left( 1 \right)}^{2}} \right)$ = $-\dfrac{1}{256}\times (5-1)=-\dfrac{4}{256}=-\dfrac{1}{64}=-\dfrac{1}{{{2}^{6}}}$. Therefore, the correct answer is option (a).
Note: Student may not separate the values, $\cos {{36}^{{}^\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}$ and $\cos {{72}^{{}^\circ }}=\dfrac{\left( \sqrt{5}+1 \right)}{4}$, if they do not know the values of these angles. As a result it will increase their efforts to solve the same question. It is required for the students to memorize the standard values of some of the angles like involved here.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

