The value of $6736{\cos ^2}{18^ \circ } + 421{\tan ^2}{36^ \circ }$ is:
Answer
280.5k+ views
Hint: The given question deals with basic simplification of trigonometric expression by using some of the simple trigonometric formulae, trigonometric identities and values of some trigonometric ratios for some basic and standard angles. Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem.
Complete step by step solution:
In the given problem, we have to find the value of trigonometric expression: $6736{\cos ^2}{18^ \circ } + 421{\tan ^2}{36^ \circ }$.
So, we know the values of the trigonometric function for the angles ${36^ \circ }$ and ${18^ \circ }$. Hence, we can substitute the values and simplify the expression further.
So, putting in the value of trigonometric function $\cos \left( {{{18}^ \circ }} \right)$ as $\left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right)$ and the value of $\tan \left( {{{36}^ \circ }} \right)$ as $\left( {\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{{\sqrt 5 + 1}}} \right)$. Hence, we get,
$ \Rightarrow 6736{\left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right)^2} + 421{\left( {\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{{\sqrt 5 + 1}}} \right)^2}$
Evaluating the squares of the terms and brackets, we get,
$ \Rightarrow 6736\left( {\dfrac{{10 + 2\sqrt 5 }}{{16}}} \right) + 421\left( {\dfrac{{10 - 2\sqrt 5 }}{{6 + 2\sqrt 5 }}} \right)$
Now, we have to simplify the above expression using the basic simplification rules.
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{10 - 2\sqrt 5 }}{{6 + 2\sqrt 5 }}} \right)\]
Now, we have to rationalize the denominator of the second term. So, we get,
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{10 - 2\sqrt 5 }}{{6 + 2\sqrt 5 }}} \right)\left( {\dfrac{{6 - 2\sqrt 5 }}{{6 - 2\sqrt 5 }}} \right)\]
Simplifying the expression further, we get,
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{\left( {10 - 2\sqrt 5 } \right)\left( {6 - 2\sqrt 5 } \right)}}{{{{\left( 6 \right)}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}} \right)\]
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{60 - 12\sqrt 5 - 20\sqrt 5 + 20}}{{36 - 20}}} \right)\]
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{80 - 32\sqrt 5 }}{{16}}} \right)\]
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {5 - 2\sqrt 5 } \right)\]
Now, taking $421$common from both the terms, we get,
\[ \Rightarrow 421\left[ {\left( {10 + 2\sqrt 5 } \right) + \left( {5 - 2\sqrt 5 } \right)} \right]\]
\[ \Rightarrow 421 \times 15\]
\[ \Rightarrow 6315\]
Hence, the value of $6736{\cos ^2}{18^ \circ } + 421{\tan ^2}{36^ \circ }$ is \[6315\] by the use of basic algebraic rules and simple trigonometric formulae and values.
So, the correct answer is “6315”.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. One must know the values of trigonometric functions for the angles ${36^ \circ }$ and ${18^ \circ }$ in order to solve the problem.
Complete step by step solution:
In the given problem, we have to find the value of trigonometric expression: $6736{\cos ^2}{18^ \circ } + 421{\tan ^2}{36^ \circ }$.
So, we know the values of the trigonometric function for the angles ${36^ \circ }$ and ${18^ \circ }$. Hence, we can substitute the values and simplify the expression further.
So, putting in the value of trigonometric function $\cos \left( {{{18}^ \circ }} \right)$ as $\left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right)$ and the value of $\tan \left( {{{36}^ \circ }} \right)$ as $\left( {\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{{\sqrt 5 + 1}}} \right)$. Hence, we get,
$ \Rightarrow 6736{\left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right)^2} + 421{\left( {\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{{\sqrt 5 + 1}}} \right)^2}$
Evaluating the squares of the terms and brackets, we get,
$ \Rightarrow 6736\left( {\dfrac{{10 + 2\sqrt 5 }}{{16}}} \right) + 421\left( {\dfrac{{10 - 2\sqrt 5 }}{{6 + 2\sqrt 5 }}} \right)$
Now, we have to simplify the above expression using the basic simplification rules.
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{10 - 2\sqrt 5 }}{{6 + 2\sqrt 5 }}} \right)\]
Now, we have to rationalize the denominator of the second term. So, we get,
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{10 - 2\sqrt 5 }}{{6 + 2\sqrt 5 }}} \right)\left( {\dfrac{{6 - 2\sqrt 5 }}{{6 - 2\sqrt 5 }}} \right)\]
Simplifying the expression further, we get,
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{\left( {10 - 2\sqrt 5 } \right)\left( {6 - 2\sqrt 5 } \right)}}{{{{\left( 6 \right)}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}} \right)\]
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{60 - 12\sqrt 5 - 20\sqrt 5 + 20}}{{36 - 20}}} \right)\]
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {\dfrac{{80 - 32\sqrt 5 }}{{16}}} \right)\]
Cancelling the common factors in numerator and denominator, we get,
\[ \Rightarrow 421\left( {10 + 2\sqrt 5 } \right) + 421\left( {5 - 2\sqrt 5 } \right)\]
Now, taking $421$common from both the terms, we get,
\[ \Rightarrow 421\left[ {\left( {10 + 2\sqrt 5 } \right) + \left( {5 - 2\sqrt 5 } \right)} \right]\]
\[ \Rightarrow 421 \times 15\]
\[ \Rightarrow 6315\]
Hence, the value of $6736{\cos ^2}{18^ \circ } + 421{\tan ^2}{36^ \circ }$ is \[6315\] by the use of basic algebraic rules and simple trigonometric formulae and values.
So, the correct answer is “6315”.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. One must know the values of trigonometric functions for the angles ${36^ \circ }$ and ${18^ \circ }$ in order to solve the problem.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it
