
The value of \[2\log 9 - \log 18\] is equal to
A. \[\log 9\]
B. \[ - \log 9\]
C. \[\log 4.5\]
D. \[ - \log 4.5\]
Answer
519k+ views
Hint:First of all, convert the given expression by using logarithm product rule. Then simplify the obtained expression by using logarithm quotient rule to obtain the required answer. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given expression is \[2\log 9 - \log 18\]
We know that \[2\log a = \log {a^2}\]
By using this formula, we get
\[ \Rightarrow 2\log 9 - \log 18 = \log {9^2} - \log 18\]
We know that \[\log a - \log b = \log \left( {\dfrac{a}{b}} \right)\]
By using this formula, we get
\[
\Rightarrow 2\log 9 - \log 18 = \log {9^2} - \log 18 = \log \left( {\dfrac{{{9^2}}}{{18}}} \right) \\
\Rightarrow 2\log 9 - \log 18 = \log \left( {\dfrac{{9 \times 9}}{{18}}} \right) \\
\Rightarrow 2\log 9 - \log 18 = \log \left( {\dfrac{9}{2}} \right) \\
\therefore 2\log 9 - \log 18 = \log 4.5 \\
\]
The value of \[2\log 9 - \log 18\] is \[\log 4.5\]
Thus, the correct option is C. \[\log 4.5\]
Note: Here we have used the formulae, logarithm power rule i.e., \[2\log a = \log {a^2}\] and logarithm quotient rule \[\log a - \log b = \log \left( {\dfrac{a}{b}} \right)\]. In mathematics, the base value of log is \[e\] whose value is approximately equal to 2.718.
Complete step-by-step answer:
Given expression is \[2\log 9 - \log 18\]
We know that \[2\log a = \log {a^2}\]
By using this formula, we get
\[ \Rightarrow 2\log 9 - \log 18 = \log {9^2} - \log 18\]
We know that \[\log a - \log b = \log \left( {\dfrac{a}{b}} \right)\]
By using this formula, we get
\[
\Rightarrow 2\log 9 - \log 18 = \log {9^2} - \log 18 = \log \left( {\dfrac{{{9^2}}}{{18}}} \right) \\
\Rightarrow 2\log 9 - \log 18 = \log \left( {\dfrac{{9 \times 9}}{{18}}} \right) \\
\Rightarrow 2\log 9 - \log 18 = \log \left( {\dfrac{9}{2}} \right) \\
\therefore 2\log 9 - \log 18 = \log 4.5 \\
\]
The value of \[2\log 9 - \log 18\] is \[\log 4.5\]
Thus, the correct option is C. \[\log 4.5\]
Note: Here we have used the formulae, logarithm power rule i.e., \[2\log a = \log {a^2}\] and logarithm quotient rule \[\log a - \log b = \log \left( {\dfrac{a}{b}} \right)\]. In mathematics, the base value of log is \[e\] whose value is approximately equal to 2.718.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
