
The value of $1-2\log 5+3\log 2$ is $\log \dfrac{16}{x}$. Find $x$.
Answer
617.4k+ views
Hint: We will use the logarithmic formulas like, $a\log b=\log {{b}^{a}}$, $\log a+\log b=\log (ab)$, $\log a-\log b=\log \dfrac{a}{b}$, etc to find the value of $x$. Also, we will consider $1$ as $\log 10$ because the value of $\log 10$ is $1$.
Complete step-by-step answer:
It is given in the question that using the expression $1-2\log 5+3\log 2$, we have to find the value of $x$ in $\log \dfrac{16}{x}$.
$\Rightarrow 1-2\log 5+3\log 2$ …………………………………………….$(1)$
To evaluate this expression we will use logarithmic formulas, as we know that
$\begin{align}
& a\log b=log{{b}^{a}} \\
& \log a+\log b=\log (ab) \\
& \log a-\log b=\log \dfrac{a}{b} \\
\end{align}$
Using the formula, $a\log b=\log {{b}^{a}}$ we can write $2\log 5$ as $\log {{(5)}^{2}}$. Similarly, we can write $3\log 2$ as $\log {{(2)}^{3}}$ in equation $(1)$, we get
$\Rightarrow 1-\log {{(5)}^{2}}+\log {{(2)}^{3}}$
$\Rightarrow 1-\log (25)+\log (8)$ ………………………………………….$(2)$
As we discussed that we can write $1$ as $\log 10$. So, on replacing $1$ with $\log 10$ in equation $(2)$, we get
$\Rightarrow \log 10-\log 25+\log 8$
$\Rightarrow \log 10+\log 8-\log 25$ ………………………………………$(3)$
Now, we will use formula $\log a+\log b=\log (ab)$ in equation $(3)$, we get
$\Rightarrow \log (10\times 8)-\log 25$ …………………………………………$(4)$
Now, we will use the formula $\log a-\log b=\log \dfrac{a}{b}$ in equation $(4)$, we get
$\Rightarrow \log \dfrac{(10\times 8)}{25}$
$\Rightarrow \log \dfrac{80}{25}$ …………………………………………………………….$(5)$
Dividing numerator and denominator with $5$ in equation $(5)$, we get
$\Rightarrow \log \dfrac{16}{5}$ ……………………………………………………………..$(6)$
$\Rightarrow \log (3.2)$
And we know that the value of $\log (3.2)$ is $0.50514$. But, in question we have to find $x$ in $\log \dfrac{16}{x}$
Comparing $\log \dfrac{16}{x}$ with equation $(6)$, we get
$\Rightarrow \log \dfrac{16}{x}=\log \dfrac{16}{5}$.
Therefore, $x=5$
Note: using the logarithmic formulas wherever required will reduce your steps and efforts to solve the question. Try to memorize all the common logarithmic formulas. $a\log b=\log {{b}^{a}}$, $\log a+\log b=\log (ab)$, $\log a-\log b=\log \dfrac{a}{b}$ etc. So that we can solve the question in a few steps as shown below.
$\begin{align}
& 1+2\log 5-3\log 2=\log \dfrac{(10\times 8)}{25} \\
& \Rightarrow \log \dfrac{16}{5}. \\
\end{align}$
Complete step-by-step answer:
It is given in the question that using the expression $1-2\log 5+3\log 2$, we have to find the value of $x$ in $\log \dfrac{16}{x}$.
$\Rightarrow 1-2\log 5+3\log 2$ …………………………………………….$(1)$
To evaluate this expression we will use logarithmic formulas, as we know that
$\begin{align}
& a\log b=log{{b}^{a}} \\
& \log a+\log b=\log (ab) \\
& \log a-\log b=\log \dfrac{a}{b} \\
\end{align}$
Using the formula, $a\log b=\log {{b}^{a}}$ we can write $2\log 5$ as $\log {{(5)}^{2}}$. Similarly, we can write $3\log 2$ as $\log {{(2)}^{3}}$ in equation $(1)$, we get
$\Rightarrow 1-\log {{(5)}^{2}}+\log {{(2)}^{3}}$
$\Rightarrow 1-\log (25)+\log (8)$ ………………………………………….$(2)$
As we discussed that we can write $1$ as $\log 10$. So, on replacing $1$ with $\log 10$ in equation $(2)$, we get
$\Rightarrow \log 10-\log 25+\log 8$
$\Rightarrow \log 10+\log 8-\log 25$ ………………………………………$(3)$
Now, we will use formula $\log a+\log b=\log (ab)$ in equation $(3)$, we get
$\Rightarrow \log (10\times 8)-\log 25$ …………………………………………$(4)$
Now, we will use the formula $\log a-\log b=\log \dfrac{a}{b}$ in equation $(4)$, we get
$\Rightarrow \log \dfrac{(10\times 8)}{25}$
$\Rightarrow \log \dfrac{80}{25}$ …………………………………………………………….$(5)$
Dividing numerator and denominator with $5$ in equation $(5)$, we get
$\Rightarrow \log \dfrac{16}{5}$ ……………………………………………………………..$(6)$
$\Rightarrow \log (3.2)$
And we know that the value of $\log (3.2)$ is $0.50514$. But, in question we have to find $x$ in $\log \dfrac{16}{x}$
Comparing $\log \dfrac{16}{x}$ with equation $(6)$, we get
$\Rightarrow \log \dfrac{16}{x}=\log \dfrac{16}{5}$.
Therefore, $x=5$
Note: using the logarithmic formulas wherever required will reduce your steps and efforts to solve the question. Try to memorize all the common logarithmic formulas. $a\log b=\log {{b}^{a}}$, $\log a+\log b=\log (ab)$, $\log a-\log b=\log \dfrac{a}{b}$ etc. So that we can solve the question in a few steps as shown below.
$\begin{align}
& 1+2\log 5-3\log 2=\log \dfrac{(10\times 8)}{25} \\
& \Rightarrow \log \dfrac{16}{5}. \\
\end{align}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

