
The $ v - s $ graph describing the motion of a motorcycle is shown in the figure. The time needed for the motorcycle to reach the position $ s = 120\;m $ [Given that $ \ln \;5 = 1.6 $ ] is $ 2\;x\;\sec $ , find $ x $ ?
Answer
562.5k+ views
Hint: Here we find the relation between the velocity $ v $ and the displacement $ s $ for the two curves separately. For the first half of the journey till $ s = 60\;m $ we will formulate the equation of the curve as $ v = \dfrac{s}{5} + 3 $ . For the second half of the journey from $ s = 60\;m $ to $ s = 120{\mkern 1mu} m $ , we see that $ v = 15\;m/s $ . In both these equations, we will substitute $ v = \dfrac{{ds}}{{dt}} $ and solve the integrations with appropriate limits.
Formula used:
$ v = \dfrac{{ds}}{{dt}} $
Complete Step by step solution:
From the graph, we form the relationship between the velocity $ v $ and the displacement $ s $ for the first half of the journey, i.e. from $ s = 0\;m $ to $ s = 60\;m $ .
The slope of the graph can be determined by dividing the $ Y $ axis coordinates with the $ X $ axis coordinates. Thus we get the slope as
$ \dfrac{{15 - 3}}{{60 - 0}} = \dfrac{1}{5} $
Now considering the general $ Y $ axis coordinate as $ v $ and the $ X $ axis coordinate as $ s $ the equation of the line in slope point form will be
$ \dfrac{{v - 3}}{{s - 0}} = \dfrac{1}{5} $
$ \Rightarrow v = \dfrac{{s + 15}}{5} $
We know that
$ v = \dfrac{{ds}}{{dt}} $
Substituting the value of $ v $ from the above equation, we get
$ \dfrac{{ds}}{{dt}} = \dfrac{{s + 15}}{5} $
$ \Rightarrow \dfrac{{ds}}{{s + 15}} = \dfrac{{dt}}{5} $
Now integrating both sides of the equation, we get,
$ \Rightarrow \int {\dfrac{{ds}}{{s + 15}}} = \int {\dfrac{{dt}}{5}} $
Putting the limits of integration from $ s = 0\;m $ to $ s = 60\;m $ , we get,
$ \Rightarrow \int\limits_{s = 0}^{s = 60} {\dfrac{{ds}}{{s + 15}}} = \int\limits_{t = 0}^{t = t} {\dfrac{{dt}}{5}} $
$ \Rightarrow \left[ {\ln \;(s + 15)} \right]_0^{60} = \left[ {\dfrac{t}{5}} \right]_0^t $
Putting the values of the limits of the integration, we get,
$ \Rightarrow \left[ {\ln \;(60 + 15) - \ln \;(0 + 15)} \right] = \left[ {\dfrac{t}{5} - \dfrac{0}{5}} \right] $
$ \Rightarrow \left[ {\ln \;(75) - \ln \;(15)} \right] = \dfrac{t}{5} $
On further simplifying, we get,
$ \Rightarrow \dfrac{t}{5} = \ln \left( {\dfrac{{75}}{{15}}} \right) $
$ \Rightarrow \dfrac{t}{5} = \ln \left( 5 \right) $
$ \Rightarrow t = 5 \times \ln \left( 5 \right) $
It is given in the question that $ \ln \;5 = 1.6 $ . Substituting this value in the above equation, we get,
$ \Rightarrow t = 5 \times 1.6 $
$ \Rightarrow t = 8\;\sec $
This is the time taken for the motorcycle to reach $ s = 60\;m $ .
Now for the next half of the journey, i.e. from $ s = 60\;m $ to $ s = 120\;m $ , we can repeat the above process.
We see that the velocity for this half of the journey is constant, i.e. $ v = 15\;m/s $ .
Using this uniform velocity, and the relation $ v = \dfrac{{ds}}{{dt}} $ , we get,
$ v = 15\;m/s = \dfrac{{ds}}{{dt}} $
$ \Rightarrow \dfrac{{ds}}{{dt}} = 15 $
$ \Rightarrow ds = 15dt $
Integrating both sides, we get,
$ \Rightarrow \int {ds} = \int {15dt} $
We now have to substitute the limits carefully. The displacement $ s $ will vary from $ s = 60\;m $ to $ s = 120\;m $ . The time taken $ t $ will vary from $ t = 8\;\sec $ to $ t = t $ , such that the value of the time $ t $ will give the actual time taken by the motorcycle to travel the entire distance of $ 120\;m $ .
$ \Rightarrow \int\limits_{s = 60}^{s = 120} {ds} = \int\limits_{t = 8}^{t = t} {15dt} $
$ \Rightarrow \left[ s \right]_{60}^{120} = \left[ {15t} \right]_8^t $
Now calculating the limits properly, we obtain,
$ \Rightarrow \left[ {15{\mkern 1mu} (t - 8)} \right] = \left[ {120 - 60} \right] $
$ \Rightarrow t - 8 = \dfrac{{60}}{{15}} $
Upon rearranging the equation we get,
$ \Rightarrow t = 8 + 4 $
$ \Rightarrow t = 12\;\sec $
It is given that this time is equal to $ 2\;x $ .
Therefore $ 2x = 12\;\sec $ .
$ \Rightarrow x = 6 $
Thus the total time taken by the motorcycle to travel the entire distance of $ 120\;m $ is $ 12\;\sec $ with the value of $ x $ being $ 6 $ .
Note:
The motorcycle moves with some acceleration in the first half of the motion. In the second half of the motion, the acceleration of the motorcycle is $ 0 $ . Since the two graphs are two separate straight lines, we have analyzed them differently and have used the major relation $ v = \dfrac{{ds}}{{dt}} $ to simplify and integrate to get the solution.
Formula used:
$ v = \dfrac{{ds}}{{dt}} $
Complete Step by step solution:
From the graph, we form the relationship between the velocity $ v $ and the displacement $ s $ for the first half of the journey, i.e. from $ s = 0\;m $ to $ s = 60\;m $ .
The slope of the graph can be determined by dividing the $ Y $ axis coordinates with the $ X $ axis coordinates. Thus we get the slope as
$ \dfrac{{15 - 3}}{{60 - 0}} = \dfrac{1}{5} $
Now considering the general $ Y $ axis coordinate as $ v $ and the $ X $ axis coordinate as $ s $ the equation of the line in slope point form will be
$ \dfrac{{v - 3}}{{s - 0}} = \dfrac{1}{5} $
$ \Rightarrow v = \dfrac{{s + 15}}{5} $
We know that
$ v = \dfrac{{ds}}{{dt}} $
Substituting the value of $ v $ from the above equation, we get
$ \dfrac{{ds}}{{dt}} = \dfrac{{s + 15}}{5} $
$ \Rightarrow \dfrac{{ds}}{{s + 15}} = \dfrac{{dt}}{5} $
Now integrating both sides of the equation, we get,
$ \Rightarrow \int {\dfrac{{ds}}{{s + 15}}} = \int {\dfrac{{dt}}{5}} $
Putting the limits of integration from $ s = 0\;m $ to $ s = 60\;m $ , we get,
$ \Rightarrow \int\limits_{s = 0}^{s = 60} {\dfrac{{ds}}{{s + 15}}} = \int\limits_{t = 0}^{t = t} {\dfrac{{dt}}{5}} $
$ \Rightarrow \left[ {\ln \;(s + 15)} \right]_0^{60} = \left[ {\dfrac{t}{5}} \right]_0^t $
Putting the values of the limits of the integration, we get,
$ \Rightarrow \left[ {\ln \;(60 + 15) - \ln \;(0 + 15)} \right] = \left[ {\dfrac{t}{5} - \dfrac{0}{5}} \right] $
$ \Rightarrow \left[ {\ln \;(75) - \ln \;(15)} \right] = \dfrac{t}{5} $
On further simplifying, we get,
$ \Rightarrow \dfrac{t}{5} = \ln \left( {\dfrac{{75}}{{15}}} \right) $
$ \Rightarrow \dfrac{t}{5} = \ln \left( 5 \right) $
$ \Rightarrow t = 5 \times \ln \left( 5 \right) $
It is given in the question that $ \ln \;5 = 1.6 $ . Substituting this value in the above equation, we get,
$ \Rightarrow t = 5 \times 1.6 $
$ \Rightarrow t = 8\;\sec $
This is the time taken for the motorcycle to reach $ s = 60\;m $ .
Now for the next half of the journey, i.e. from $ s = 60\;m $ to $ s = 120\;m $ , we can repeat the above process.
We see that the velocity for this half of the journey is constant, i.e. $ v = 15\;m/s $ .
Using this uniform velocity, and the relation $ v = \dfrac{{ds}}{{dt}} $ , we get,
$ v = 15\;m/s = \dfrac{{ds}}{{dt}} $
$ \Rightarrow \dfrac{{ds}}{{dt}} = 15 $
$ \Rightarrow ds = 15dt $
Integrating both sides, we get,
$ \Rightarrow \int {ds} = \int {15dt} $
We now have to substitute the limits carefully. The displacement $ s $ will vary from $ s = 60\;m $ to $ s = 120\;m $ . The time taken $ t $ will vary from $ t = 8\;\sec $ to $ t = t $ , such that the value of the time $ t $ will give the actual time taken by the motorcycle to travel the entire distance of $ 120\;m $ .
$ \Rightarrow \int\limits_{s = 60}^{s = 120} {ds} = \int\limits_{t = 8}^{t = t} {15dt} $
$ \Rightarrow \left[ s \right]_{60}^{120} = \left[ {15t} \right]_8^t $
Now calculating the limits properly, we obtain,
$ \Rightarrow \left[ {15{\mkern 1mu} (t - 8)} \right] = \left[ {120 - 60} \right] $
$ \Rightarrow t - 8 = \dfrac{{60}}{{15}} $
Upon rearranging the equation we get,
$ \Rightarrow t = 8 + 4 $
$ \Rightarrow t = 12\;\sec $
It is given that this time is equal to $ 2\;x $ .
Therefore $ 2x = 12\;\sec $ .
$ \Rightarrow x = 6 $
Thus the total time taken by the motorcycle to travel the entire distance of $ 120\;m $ is $ 12\;\sec $ with the value of $ x $ being $ 6 $ .
Note:
The motorcycle moves with some acceleration in the first half of the motion. In the second half of the motion, the acceleration of the motorcycle is $ 0 $ . Since the two graphs are two separate straight lines, we have analyzed them differently and have used the major relation $ v = \dfrac{{ds}}{{dt}} $ to simplify and integrate to get the solution.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

