
The $ v - s $ graph describing the motion of a motorcycle is shown in the figure. The time needed for the motorcycle to reach the position $ s = 120\;m $ [Given that $ \ln \;5 = 1.6 $ ] is $ 2\;x\;\sec $ , find $ x $ ?
Answer
548.4k+ views
Hint: Here we find the relation between the velocity $ v $ and the displacement $ s $ for the two curves separately. For the first half of the journey till $ s = 60\;m $ we will formulate the equation of the curve as $ v = \dfrac{s}{5} + 3 $ . For the second half of the journey from $ s = 60\;m $ to $ s = 120{\mkern 1mu} m $ , we see that $ v = 15\;m/s $ . In both these equations, we will substitute $ v = \dfrac{{ds}}{{dt}} $ and solve the integrations with appropriate limits.
Formula used:
$ v = \dfrac{{ds}}{{dt}} $
Complete Step by step solution:
From the graph, we form the relationship between the velocity $ v $ and the displacement $ s $ for the first half of the journey, i.e. from $ s = 0\;m $ to $ s = 60\;m $ .
The slope of the graph can be determined by dividing the $ Y $ axis coordinates with the $ X $ axis coordinates. Thus we get the slope as
$ \dfrac{{15 - 3}}{{60 - 0}} = \dfrac{1}{5} $
Now considering the general $ Y $ axis coordinate as $ v $ and the $ X $ axis coordinate as $ s $ the equation of the line in slope point form will be
$ \dfrac{{v - 3}}{{s - 0}} = \dfrac{1}{5} $
$ \Rightarrow v = \dfrac{{s + 15}}{5} $
We know that
$ v = \dfrac{{ds}}{{dt}} $
Substituting the value of $ v $ from the above equation, we get
$ \dfrac{{ds}}{{dt}} = \dfrac{{s + 15}}{5} $
$ \Rightarrow \dfrac{{ds}}{{s + 15}} = \dfrac{{dt}}{5} $
Now integrating both sides of the equation, we get,
$ \Rightarrow \int {\dfrac{{ds}}{{s + 15}}} = \int {\dfrac{{dt}}{5}} $
Putting the limits of integration from $ s = 0\;m $ to $ s = 60\;m $ , we get,
$ \Rightarrow \int\limits_{s = 0}^{s = 60} {\dfrac{{ds}}{{s + 15}}} = \int\limits_{t = 0}^{t = t} {\dfrac{{dt}}{5}} $
$ \Rightarrow \left[ {\ln \;(s + 15)} \right]_0^{60} = \left[ {\dfrac{t}{5}} \right]_0^t $
Putting the values of the limits of the integration, we get,
$ \Rightarrow \left[ {\ln \;(60 + 15) - \ln \;(0 + 15)} \right] = \left[ {\dfrac{t}{5} - \dfrac{0}{5}} \right] $
$ \Rightarrow \left[ {\ln \;(75) - \ln \;(15)} \right] = \dfrac{t}{5} $
On further simplifying, we get,
$ \Rightarrow \dfrac{t}{5} = \ln \left( {\dfrac{{75}}{{15}}} \right) $
$ \Rightarrow \dfrac{t}{5} = \ln \left( 5 \right) $
$ \Rightarrow t = 5 \times \ln \left( 5 \right) $
It is given in the question that $ \ln \;5 = 1.6 $ . Substituting this value in the above equation, we get,
$ \Rightarrow t = 5 \times 1.6 $
$ \Rightarrow t = 8\;\sec $
This is the time taken for the motorcycle to reach $ s = 60\;m $ .
Now for the next half of the journey, i.e. from $ s = 60\;m $ to $ s = 120\;m $ , we can repeat the above process.
We see that the velocity for this half of the journey is constant, i.e. $ v = 15\;m/s $ .
Using this uniform velocity, and the relation $ v = \dfrac{{ds}}{{dt}} $ , we get,
$ v = 15\;m/s = \dfrac{{ds}}{{dt}} $
$ \Rightarrow \dfrac{{ds}}{{dt}} = 15 $
$ \Rightarrow ds = 15dt $
Integrating both sides, we get,
$ \Rightarrow \int {ds} = \int {15dt} $
We now have to substitute the limits carefully. The displacement $ s $ will vary from $ s = 60\;m $ to $ s = 120\;m $ . The time taken $ t $ will vary from $ t = 8\;\sec $ to $ t = t $ , such that the value of the time $ t $ will give the actual time taken by the motorcycle to travel the entire distance of $ 120\;m $ .
$ \Rightarrow \int\limits_{s = 60}^{s = 120} {ds} = \int\limits_{t = 8}^{t = t} {15dt} $
$ \Rightarrow \left[ s \right]_{60}^{120} = \left[ {15t} \right]_8^t $
Now calculating the limits properly, we obtain,
$ \Rightarrow \left[ {15{\mkern 1mu} (t - 8)} \right] = \left[ {120 - 60} \right] $
$ \Rightarrow t - 8 = \dfrac{{60}}{{15}} $
Upon rearranging the equation we get,
$ \Rightarrow t = 8 + 4 $
$ \Rightarrow t = 12\;\sec $
It is given that this time is equal to $ 2\;x $ .
Therefore $ 2x = 12\;\sec $ .
$ \Rightarrow x = 6 $
Thus the total time taken by the motorcycle to travel the entire distance of $ 120\;m $ is $ 12\;\sec $ with the value of $ x $ being $ 6 $ .
Note:
The motorcycle moves with some acceleration in the first half of the motion. In the second half of the motion, the acceleration of the motorcycle is $ 0 $ . Since the two graphs are two separate straight lines, we have analyzed them differently and have used the major relation $ v = \dfrac{{ds}}{{dt}} $ to simplify and integrate to get the solution.
Formula used:
$ v = \dfrac{{ds}}{{dt}} $
Complete Step by step solution:
From the graph, we form the relationship between the velocity $ v $ and the displacement $ s $ for the first half of the journey, i.e. from $ s = 0\;m $ to $ s = 60\;m $ .
The slope of the graph can be determined by dividing the $ Y $ axis coordinates with the $ X $ axis coordinates. Thus we get the slope as
$ \dfrac{{15 - 3}}{{60 - 0}} = \dfrac{1}{5} $
Now considering the general $ Y $ axis coordinate as $ v $ and the $ X $ axis coordinate as $ s $ the equation of the line in slope point form will be
$ \dfrac{{v - 3}}{{s - 0}} = \dfrac{1}{5} $
$ \Rightarrow v = \dfrac{{s + 15}}{5} $
We know that
$ v = \dfrac{{ds}}{{dt}} $
Substituting the value of $ v $ from the above equation, we get
$ \dfrac{{ds}}{{dt}} = \dfrac{{s + 15}}{5} $
$ \Rightarrow \dfrac{{ds}}{{s + 15}} = \dfrac{{dt}}{5} $
Now integrating both sides of the equation, we get,
$ \Rightarrow \int {\dfrac{{ds}}{{s + 15}}} = \int {\dfrac{{dt}}{5}} $
Putting the limits of integration from $ s = 0\;m $ to $ s = 60\;m $ , we get,
$ \Rightarrow \int\limits_{s = 0}^{s = 60} {\dfrac{{ds}}{{s + 15}}} = \int\limits_{t = 0}^{t = t} {\dfrac{{dt}}{5}} $
$ \Rightarrow \left[ {\ln \;(s + 15)} \right]_0^{60} = \left[ {\dfrac{t}{5}} \right]_0^t $
Putting the values of the limits of the integration, we get,
$ \Rightarrow \left[ {\ln \;(60 + 15) - \ln \;(0 + 15)} \right] = \left[ {\dfrac{t}{5} - \dfrac{0}{5}} \right] $
$ \Rightarrow \left[ {\ln \;(75) - \ln \;(15)} \right] = \dfrac{t}{5} $
On further simplifying, we get,
$ \Rightarrow \dfrac{t}{5} = \ln \left( {\dfrac{{75}}{{15}}} \right) $
$ \Rightarrow \dfrac{t}{5} = \ln \left( 5 \right) $
$ \Rightarrow t = 5 \times \ln \left( 5 \right) $
It is given in the question that $ \ln \;5 = 1.6 $ . Substituting this value in the above equation, we get,
$ \Rightarrow t = 5 \times 1.6 $
$ \Rightarrow t = 8\;\sec $
This is the time taken for the motorcycle to reach $ s = 60\;m $ .
Now for the next half of the journey, i.e. from $ s = 60\;m $ to $ s = 120\;m $ , we can repeat the above process.
We see that the velocity for this half of the journey is constant, i.e. $ v = 15\;m/s $ .
Using this uniform velocity, and the relation $ v = \dfrac{{ds}}{{dt}} $ , we get,
$ v = 15\;m/s = \dfrac{{ds}}{{dt}} $
$ \Rightarrow \dfrac{{ds}}{{dt}} = 15 $
$ \Rightarrow ds = 15dt $
Integrating both sides, we get,
$ \Rightarrow \int {ds} = \int {15dt} $
We now have to substitute the limits carefully. The displacement $ s $ will vary from $ s = 60\;m $ to $ s = 120\;m $ . The time taken $ t $ will vary from $ t = 8\;\sec $ to $ t = t $ , such that the value of the time $ t $ will give the actual time taken by the motorcycle to travel the entire distance of $ 120\;m $ .
$ \Rightarrow \int\limits_{s = 60}^{s = 120} {ds} = \int\limits_{t = 8}^{t = t} {15dt} $
$ \Rightarrow \left[ s \right]_{60}^{120} = \left[ {15t} \right]_8^t $
Now calculating the limits properly, we obtain,
$ \Rightarrow \left[ {15{\mkern 1mu} (t - 8)} \right] = \left[ {120 - 60} \right] $
$ \Rightarrow t - 8 = \dfrac{{60}}{{15}} $
Upon rearranging the equation we get,
$ \Rightarrow t = 8 + 4 $
$ \Rightarrow t = 12\;\sec $
It is given that this time is equal to $ 2\;x $ .
Therefore $ 2x = 12\;\sec $ .
$ \Rightarrow x = 6 $
Thus the total time taken by the motorcycle to travel the entire distance of $ 120\;m $ is $ 12\;\sec $ with the value of $ x $ being $ 6 $ .
Note:
The motorcycle moves with some acceleration in the first half of the motion. In the second half of the motion, the acceleration of the motorcycle is $ 0 $ . Since the two graphs are two separate straight lines, we have analyzed them differently and have used the major relation $ v = \dfrac{{ds}}{{dt}} $ to simplify and integrate to get the solution.
Recently Updated Pages
How many gm of solid NaOH must be added to 100mL of class 11 chemistry CBSE

Explain mitosis with a neat labelled diagram class 11 biology CBSE

Give two examples for each of the following types of class 11 chemistry CBSE

A Tshaped object with dimensions shown in the figure class 11 physics CBSE

How many kilometers are there in 100 meters class 11 maths CBSE

What is the difference between the mass of an object class 11 physics CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

