
The triangle with vertices \[\left( 4,3 \right),\left( -3,2 \right),\left( 1,-6 \right)\] is
\[A)\] An obtuse angled triangle
\[B)\] An acute angled triangle
\[C)\] right angled triangle
\[D)\] right angled isosceles
Answer
583.8k+ views
Hint: We know that if \[A\left( {{x}_{1}},{{y}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}} \right)\] are two points on a line equation AB is \[y-{{y}_{1}}=\left( \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \right)\left( x-{{x}_{1}} \right)\]. We know that if the a line equation has slope \[{{m}_{1}}\] and other line equation has slope \[{{m}_{2}}\], then the angle between these two lines is equal to \[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]. We know that the slope of \[ax+by+c=0\] is equal to \[\dfrac{-a}{b}\]. By using this concept, we can solve the problem.
Complete step by step answer:
From the question, we were given that a triangle of the vertices \[\left( 4,3 \right),\left( -3,2 \right),\left( 1,-6 \right)\]. Let us assume the vertices of the triangle as \[A\left( 4,3 \right),B\left( -3,2 \right),C\left( 1,-6 \right)\].
We know that if \[A\left( {{x}_{1}},{{y}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}} \right)\] are two points on a line equation AB is \[y-{{y}_{1}}=\left( \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \right)\left( x-{{x}_{1}} \right)\].
Now let us find the equation of AB whose vertices are \[A\left( 4,3 \right)\] and \[B\left( -3,2 \right)\]. So, the equation of line AB is
\[\begin{align}
& \Rightarrow y-3=\left( \dfrac{2-3}{-3-4} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\left( \dfrac{-1}{-7} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\left( \dfrac{1}{7} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\dfrac{x-4}{7} \\
\end{align}\]
Now by using cross multiplication, we get
\[\begin{align}
& \Rightarrow x-4=7\left( y-3 \right) \\
& \Rightarrow x-4=7y-21 \\
& \Rightarrow x-7y+17=0.....(1) \\
\end{align}\]
So, it is clear that the line equation of AB is \[x-7y+8=0\].
Now let us find the equation of BC whose vertices are \[B\left( -3,2 \right)\] and \[C\left( 1,-6 \right)\] . So, the equation of line BC is
\[\begin{align}
& \Rightarrow y-2=\left( \dfrac{-6-2}{1-(-3)} \right)\left( x-(-3) \right) \\
& \Rightarrow y-2=\left( \dfrac{-8}{4} \right)\left( x+3 \right) \\
& \Rightarrow y-2=\left( -2 \right)\left( x+3 \right) \\
& \Rightarrow y-2=-2x-6 \\
& \Rightarrow 2x+y+4=0....(2) \\
\end{align}\]
So, it is clear that the line equation of AB is \[2x+y+4=0\].
Now let us find the equation of AC whose vertices are \[A\left( 4,3 \right)\] and \[C\left( 1,-6 \right)\]. So, the equation of line AB is
\[\begin{align}
& \Rightarrow y-3=\left( \dfrac{-6-3}{1-4} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\left( \dfrac{-9}{-3} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\left( 3 \right)\left( x-4 \right) \\
& \Rightarrow y-3=3x-12 \\
& \Rightarrow 3x-y-9=0...(3) \\
\end{align}\]
So, it is clear that the line equation of AC is \[3x-y-9=0\].
We know that the slope of \[ax+by+c=0\] is equal to \[\dfrac{-a}{b}\].
Now we should find the slope of AB, BC and CA.
Let us assume the slope of AB is equal to \[{{m}_{AB}}\].
Then we get
\[\begin{align}
& \Rightarrow {{m}_{AB}}=\dfrac{-1}{-7} \\
& \Rightarrow {{m}_{AB}}=\dfrac{1}{7}.....(4) \\
\end{align}\]
Let us assume the slope of BC is \[{{m}_{BC}}\].
Then we get
\[\begin{align}
& \Rightarrow {{m}_{BC}}=\dfrac{-2}{1} \\
& \Rightarrow {{m}_{BC}}=-2.....(5) \\
\end{align}\]
Let us assume the slope of CA is \[{{m}_{CA}}\].
\[\begin{align}
& \Rightarrow {{m}_{CA}}=\dfrac{3}{1} \\
& \Rightarrow {{m}_{CA}}=3.....(6) \\
\end{align}\]
We know if the a line equation has slope \[{{m}_{1}}\] and other line equation has slope \[{{m}_{2}}\], then the angle between these two lines is equal to \[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\].
Let us assume the angle between AB and BC is equal to \[\angle B\]. So, now let us find the angle between AB and BC.
\[\begin{align}
& \Rightarrow \tan \angle B=\dfrac{\dfrac{1}{7}-\left( -2 \right)}{1+\left( \dfrac{1}{7} \right)\left( -2 \right)} \\
& \Rightarrow \tan \angle B=\dfrac{\dfrac{1}{7}+2}{1-\dfrac{2}{7}} \\
& \Rightarrow \tan \angle B=\dfrac{\dfrac{15}{7}}{\dfrac{5}{7}} \\
& \Rightarrow \tan \angle B=\dfrac{15}{5} \\
& \Rightarrow \tan \angle B=3....(7) \\
\end{align}\]
Let us assume the angle between AC and BC is equal to \[\angle C\]. So, now let us find the angle between AC and BC.
\[\begin{align}
& \Rightarrow \tan \angle C=\dfrac{-2-3}{1+\left( 3 \right)\left( -2 \right)} \\
& \Rightarrow \tan \angle C=\dfrac{-5}{1+\left( -6 \right)} \\
& \Rightarrow \tan \angle C=\dfrac{-5}{-5} \\
& \Rightarrow \tan \angle C=1....(8) \\
\end{align}\]
Let us assume the angle between AC and CA is equal to \[\angle A\]. So, now let us find the angle between AC and CA.
\[\begin{align}
& \Rightarrow \tan \angle A=\dfrac{3-\dfrac{1}{7}}{1+\left( 3 \right)\left( \dfrac{1}{7} \right)} \\
& \Rightarrow \tan \angle A=\dfrac{\dfrac{20}{7}}{1+\dfrac{3}{7}} \\
& \Rightarrow \tan \angle A=\dfrac{\dfrac{20}{7}}{\dfrac{10}{7}} \\
& \Rightarrow \tan \angle A=2....(8) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \tan \angle A=\dfrac{3-\dfrac{1}{7}}{1+\left( 3 \right)\left( \dfrac{1}{7} \right)} \\
& \Rightarrow \tan \angle A=\dfrac{\dfrac{20}{7}}{1+\dfrac{3}{7}} \\
& \Rightarrow \tan \angle A=\dfrac{\dfrac{20}{7}}{\dfrac{10}{7}} \\ \
& \Rightarrow \tan \angle A=2....(9) \\
\end{align}\]
So, from equation (7), equation (8) and equation (9) it is clear that the triangle ABC is acute angle triangle.
Note:
Students may have a misconception that if the a line equation has slope \[{{m}_{1}}\] and other line equation has slope \[{{m}_{2}}\], then the angle between these two lines is equal to \[\tan \theta =\dfrac{{{m}_{2}}+{{m}_{1}}}{1-{{m}_{1}}{{m}_{2}}}\]. But we know that if the a line equation has slope \[{{m}_{1}}\] and other line equation has slope \[{{m}_{2}}\], then the angle between these two lines is equal to \[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]. So, this misconception should be avoided.
Complete step by step answer:
From the question, we were given that a triangle of the vertices \[\left( 4,3 \right),\left( -3,2 \right),\left( 1,-6 \right)\]. Let us assume the vertices of the triangle as \[A\left( 4,3 \right),B\left( -3,2 \right),C\left( 1,-6 \right)\].
We know that if \[A\left( {{x}_{1}},{{y}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}} \right)\] are two points on a line equation AB is \[y-{{y}_{1}}=\left( \dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} \right)\left( x-{{x}_{1}} \right)\].
Now let us find the equation of AB whose vertices are \[A\left( 4,3 \right)\] and \[B\left( -3,2 \right)\]. So, the equation of line AB is
\[\begin{align}
& \Rightarrow y-3=\left( \dfrac{2-3}{-3-4} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\left( \dfrac{-1}{-7} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\left( \dfrac{1}{7} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\dfrac{x-4}{7} \\
\end{align}\]
Now by using cross multiplication, we get
\[\begin{align}
& \Rightarrow x-4=7\left( y-3 \right) \\
& \Rightarrow x-4=7y-21 \\
& \Rightarrow x-7y+17=0.....(1) \\
\end{align}\]
So, it is clear that the line equation of AB is \[x-7y+8=0\].
Now let us find the equation of BC whose vertices are \[B\left( -3,2 \right)\] and \[C\left( 1,-6 \right)\] . So, the equation of line BC is
\[\begin{align}
& \Rightarrow y-2=\left( \dfrac{-6-2}{1-(-3)} \right)\left( x-(-3) \right) \\
& \Rightarrow y-2=\left( \dfrac{-8}{4} \right)\left( x+3 \right) \\
& \Rightarrow y-2=\left( -2 \right)\left( x+3 \right) \\
& \Rightarrow y-2=-2x-6 \\
& \Rightarrow 2x+y+4=0....(2) \\
\end{align}\]
So, it is clear that the line equation of AB is \[2x+y+4=0\].
Now let us find the equation of AC whose vertices are \[A\left( 4,3 \right)\] and \[C\left( 1,-6 \right)\]. So, the equation of line AB is
\[\begin{align}
& \Rightarrow y-3=\left( \dfrac{-6-3}{1-4} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\left( \dfrac{-9}{-3} \right)\left( x-4 \right) \\
& \Rightarrow y-3=\left( 3 \right)\left( x-4 \right) \\
& \Rightarrow y-3=3x-12 \\
& \Rightarrow 3x-y-9=0...(3) \\
\end{align}\]
So, it is clear that the line equation of AC is \[3x-y-9=0\].
We know that the slope of \[ax+by+c=0\] is equal to \[\dfrac{-a}{b}\].
Now we should find the slope of AB, BC and CA.
Let us assume the slope of AB is equal to \[{{m}_{AB}}\].
Then we get
\[\begin{align}
& \Rightarrow {{m}_{AB}}=\dfrac{-1}{-7} \\
& \Rightarrow {{m}_{AB}}=\dfrac{1}{7}.....(4) \\
\end{align}\]
Let us assume the slope of BC is \[{{m}_{BC}}\].
Then we get
\[\begin{align}
& \Rightarrow {{m}_{BC}}=\dfrac{-2}{1} \\
& \Rightarrow {{m}_{BC}}=-2.....(5) \\
\end{align}\]
Let us assume the slope of CA is \[{{m}_{CA}}\].
\[\begin{align}
& \Rightarrow {{m}_{CA}}=\dfrac{3}{1} \\
& \Rightarrow {{m}_{CA}}=3.....(6) \\
\end{align}\]
We know if the a line equation has slope \[{{m}_{1}}\] and other line equation has slope \[{{m}_{2}}\], then the angle between these two lines is equal to \[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\].
Let us assume the angle between AB and BC is equal to \[\angle B\]. So, now let us find the angle between AB and BC.
\[\begin{align}
& \Rightarrow \tan \angle B=\dfrac{\dfrac{1}{7}-\left( -2 \right)}{1+\left( \dfrac{1}{7} \right)\left( -2 \right)} \\
& \Rightarrow \tan \angle B=\dfrac{\dfrac{1}{7}+2}{1-\dfrac{2}{7}} \\
& \Rightarrow \tan \angle B=\dfrac{\dfrac{15}{7}}{\dfrac{5}{7}} \\
& \Rightarrow \tan \angle B=\dfrac{15}{5} \\
& \Rightarrow \tan \angle B=3....(7) \\
\end{align}\]
Let us assume the angle between AC and BC is equal to \[\angle C\]. So, now let us find the angle between AC and BC.
\[\begin{align}
& \Rightarrow \tan \angle C=\dfrac{-2-3}{1+\left( 3 \right)\left( -2 \right)} \\
& \Rightarrow \tan \angle C=\dfrac{-5}{1+\left( -6 \right)} \\
& \Rightarrow \tan \angle C=\dfrac{-5}{-5} \\
& \Rightarrow \tan \angle C=1....(8) \\
\end{align}\]
Let us assume the angle between AC and CA is equal to \[\angle A\]. So, now let us find the angle between AC and CA.
\[\begin{align}
& \Rightarrow \tan \angle A=\dfrac{3-\dfrac{1}{7}}{1+\left( 3 \right)\left( \dfrac{1}{7} \right)} \\
& \Rightarrow \tan \angle A=\dfrac{\dfrac{20}{7}}{1+\dfrac{3}{7}} \\
& \Rightarrow \tan \angle A=\dfrac{\dfrac{20}{7}}{\dfrac{10}{7}} \\
& \Rightarrow \tan \angle A=2....(8) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \tan \angle A=\dfrac{3-\dfrac{1}{7}}{1+\left( 3 \right)\left( \dfrac{1}{7} \right)} \\
& \Rightarrow \tan \angle A=\dfrac{\dfrac{20}{7}}{1+\dfrac{3}{7}} \\
& \Rightarrow \tan \angle A=\dfrac{\dfrac{20}{7}}{\dfrac{10}{7}} \\ \
& \Rightarrow \tan \angle A=2....(9) \\
\end{align}\]
So, from equation (7), equation (8) and equation (9) it is clear that the triangle ABC is acute angle triangle.
Note:
Students may have a misconception that if the a line equation has slope \[{{m}_{1}}\] and other line equation has slope \[{{m}_{2}}\], then the angle between these two lines is equal to \[\tan \theta =\dfrac{{{m}_{2}}+{{m}_{1}}}{1-{{m}_{1}}{{m}_{2}}}\]. But we know that if the a line equation has slope \[{{m}_{1}}\] and other line equation has slope \[{{m}_{2}}\], then the angle between these two lines is equal to \[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]. So, this misconception should be avoided.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

