
The transformed equation of ${x^4} + 8{x^3} + x - 5 = 0$ by eliminating second term is
(A) ${x^4} - 24{x^2} + 65x - 55 = 0$
(B) ${x^4} + 24{x^2} + 65x + 55 = 0$
(C) ${x^4} - 24{x^2} - 65x + 55 = 0$
(D) ${x^4} + 24{x^2} + 65x - 55 = 0$
Answer
589.8k+ views
Hint: At first use the substitution \[\left( {x + h} \right)\] in the place of x in the given equation. Now note that, in order to eliminate the second term from this transformed equation, the coefficient of \[{x^3}\] must be zero. Therefore find h and rewrite the transformed equation substituting the value of h.
Complete step by step answer:
According to the question we are to eliminate the second term from the equation ${x^4} + 8{x^3} + x - 5 = 0$..... (1)
Let us at first use the substitution \[\left( {x + h} \right)\] in the place of x in equation (1).
Therefore we have,
${\left( {x + h} \right)^4} + 8{\left( {x + h} \right)^3} + \left( {x + h} \right) - 5 = 0$
On expanding we get,
$ \Rightarrow {x^4} + 4{x^3}h + 6{x^2}{h^2} + 4x{h^3} + {h^4} + 8\left[ {{x^3} + 3{x^2}h + 3x{h^2} + {h^3}} \right] + x + h - 5 = 0$
On taking terms common we get,
$ \Rightarrow {x^4} + \left( {4h + 8} \right){x^3} + \left( {6{h^2} + 24h} \right){x^2} + \left( {4{h^3} + 24{h^2} + 1} \right)x + \left( {{h^4} + 8{h^3} + h - 5} \right) = 0$ ..... (2)
Now, in order to eliminate the second term from this transformed equation of${x^4} + 8{x^3} + x - 5 = 0$, we have to make the coefficient of \[{x^3}\] zero.
$ \Rightarrow 4h + 8 = 0$
On cross multiplication and simplification we get,
$ \Rightarrow h = \dfrac{{ - 8}}{4} = - 2$
Now, putting h=−2 in (2) we get,
$ \Rightarrow {x^4} + \left( { - 8 + 8} \right){x^3} + \left( {24 - 48} \right){x^2} + \left( { - 32 + 96 + 1} \right)x + \left( {16 - 64 - 2 - 5} \right) = 0$
On simplification we get,
$ \Rightarrow {x^4} - 24{x^2} + 65x - 55 = 0$
Therefore, the transformed equation of ${x^4} + 8{x^3} + x - 5 = 0$ by eliminating second term is ${x^4} - 24{x^2} + 65x - 55 = 0$
Hence, option (A) is correct.
Note: In mathematics, a polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponentiation of variables. An example of a polynomial of a single indeterminate x is \[{x^2}\; - {\text{ }}4x{\text{ }} + {\text{ }}7\]. Here, we have to eliminate second term so we take coefficient of \[{x^3}\] to be zero, in other questions if it is asked to eliminate any other term we first substitute \[\left( {x + h} \right)\] in place of x, and then take the coefficient of the term which is asked to eliminate, as 0, and then we solve further.
Complete step by step answer:
According to the question we are to eliminate the second term from the equation ${x^4} + 8{x^3} + x - 5 = 0$..... (1)
Let us at first use the substitution \[\left( {x + h} \right)\] in the place of x in equation (1).
Therefore we have,
${\left( {x + h} \right)^4} + 8{\left( {x + h} \right)^3} + \left( {x + h} \right) - 5 = 0$
On expanding we get,
$ \Rightarrow {x^4} + 4{x^3}h + 6{x^2}{h^2} + 4x{h^3} + {h^4} + 8\left[ {{x^3} + 3{x^2}h + 3x{h^2} + {h^3}} \right] + x + h - 5 = 0$
On taking terms common we get,
$ \Rightarrow {x^4} + \left( {4h + 8} \right){x^3} + \left( {6{h^2} + 24h} \right){x^2} + \left( {4{h^3} + 24{h^2} + 1} \right)x + \left( {{h^4} + 8{h^3} + h - 5} \right) = 0$ ..... (2)
Now, in order to eliminate the second term from this transformed equation of${x^4} + 8{x^3} + x - 5 = 0$, we have to make the coefficient of \[{x^3}\] zero.
$ \Rightarrow 4h + 8 = 0$
On cross multiplication and simplification we get,
$ \Rightarrow h = \dfrac{{ - 8}}{4} = - 2$
Now, putting h=−2 in (2) we get,
$ \Rightarrow {x^4} + \left( { - 8 + 8} \right){x^3} + \left( {24 - 48} \right){x^2} + \left( { - 32 + 96 + 1} \right)x + \left( {16 - 64 - 2 - 5} \right) = 0$
On simplification we get,
$ \Rightarrow {x^4} - 24{x^2} + 65x - 55 = 0$
Therefore, the transformed equation of ${x^4} + 8{x^3} + x - 5 = 0$ by eliminating second term is ${x^4} - 24{x^2} + 65x - 55 = 0$
Hence, option (A) is correct.
Note: In mathematics, a polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponentiation of variables. An example of a polynomial of a single indeterminate x is \[{x^2}\; - {\text{ }}4x{\text{ }} + {\text{ }}7\]. Here, we have to eliminate second term so we take coefficient of \[{x^3}\] to be zero, in other questions if it is asked to eliminate any other term we first substitute \[\left( {x + h} \right)\] in place of x, and then take the coefficient of the term which is asked to eliminate, as 0, and then we solve further.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

