Answer
Verified
441.3k+ views
Hint: We can draw a diagram with the given details. Then we can form a trigonometric ratio and solve the equation to get the required length. According to the question the, appropriate trigonometric ratio will be tan.
Complete step by step solution: We can draw a diagram with the given details
In the figure, AC is the broken part of the tree, B is the foot of the tree and c is the point where the top end touches the ground.
Consider right triangle ABC, by trigonometry,
${\text{cosC = }}\dfrac{{{\text{adjecent side}}}}{{{\text{hypotenuse}}}}{\text{ = }}\dfrac{{{\text{BC}}}}{{{\text{AC}}}}$
${\text{cos30 = }}\dfrac{{{\text{15}}}}{{{\text{AB}}}}$
We know ${\text{cos30 = }}\dfrac{{\sqrt {\text{3}} }}{{\text{2}}}$. Using this in the above equation, we get,
$\dfrac{{\sqrt {\text{3}} }}{{\text{2}}}{\text{ = }}\dfrac{{{\text{15}}}}{{{\text{AB}}}}$
\[
\Rightarrow {\text{AB = }}\dfrac{{{\text{15} \times 2}}}{{\sqrt {\text{3}} }}{\text{ = }}\dfrac{{{\text{30}}}}{{\sqrt {\text{3}} }} \\
\Rightarrow {\text{AB = 10}}\sqrt {\text{3}} {\text{ m}} \\
\]
So, length of the broken part is \[{\text{10}}\sqrt {\text{3}} {\text{ m}}\]
Therefore, the correct answer is option D.
Note: Drawing a diagram with the given details is very important. The concept of simple trigonometry is used to find the length of the broken piece. Trigonometric values of important angles must be known. We must understand which angle and sides of the right-angled triangle are given in the question.
Complete step by step solution: We can draw a diagram with the given details
In the figure, AC is the broken part of the tree, B is the foot of the tree and c is the point where the top end touches the ground.
Consider right triangle ABC, by trigonometry,
${\text{cosC = }}\dfrac{{{\text{adjecent side}}}}{{{\text{hypotenuse}}}}{\text{ = }}\dfrac{{{\text{BC}}}}{{{\text{AC}}}}$
${\text{cos30 = }}\dfrac{{{\text{15}}}}{{{\text{AB}}}}$
We know ${\text{cos30 = }}\dfrac{{\sqrt {\text{3}} }}{{\text{2}}}$. Using this in the above equation, we get,
$\dfrac{{\sqrt {\text{3}} }}{{\text{2}}}{\text{ = }}\dfrac{{{\text{15}}}}{{{\text{AB}}}}$
\[
\Rightarrow {\text{AB = }}\dfrac{{{\text{15} \times 2}}}{{\sqrt {\text{3}} }}{\text{ = }}\dfrac{{{\text{30}}}}{{\sqrt {\text{3}} }} \\
\Rightarrow {\text{AB = 10}}\sqrt {\text{3}} {\text{ m}} \\
\]
So, length of the broken part is \[{\text{10}}\sqrt {\text{3}} {\text{ m}}\]
Therefore, the correct answer is option D.
Note: Drawing a diagram with the given details is very important. The concept of simple trigonometry is used to find the length of the broken piece. Trigonometric values of important angles must be known. We must understand which angle and sides of the right-angled triangle are given in the question.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE