
The tangent to the hyperbola $xy={{c}^{2}}$ at a point P intersects the x-axis at T and the y-axis at T’. The normal to the curve at the same point intersects the x-axis at N and the y-axis at T’. If $\Delta $ is the area of the triangle PNT and $\Delta '$ is the area of the triangle PN’T’, then $\dfrac{1}{\Delta }+\dfrac{1}{\Delta '}$ is
[a] Equal to 1
[b] Depends on the point taken
[c] Depends on c
[d] Equal to 2.
Answer
584.7k+ views
Hint: Assume that the point P on the curve $xy={{c}^{2}}$ be $P\left( x,\dfrac{{{c}^{2}}}{x} \right)$. Find the slope of the tangent to the curve at Point P by differentiating y with respect to x. Hence find the equation of the tangent and hence find the coordinates of points T and T’. Use the fact that the tangent and normal are perpendicular to each other. Hence find the equation of the normal and hence find the coordinates of the points N and N’. Hence find the areas of the triangle PNT and PN’T’ and hence find the value of $\dfrac{1}{\Delta }+\dfrac{1}{\Delta '}$
Complete step by step solution:
Let the $P\left( {{x}_{1}},{{y}_{1}} \right)$be a point on the curve $xy={{c}^{2}}$
Satifying the point on the curve, we have
$\begin{align}
& {{x}_{1}}{{y}_{1}}={{c}^{2}} \\
& \Rightarrow {{y}_{1}}=\dfrac{{{c}^{2}}}{{{x}_{1}}} \\
\end{align}$
Hence, we have
$P\equiv \left( {{x}_{1}},\dfrac{{{c}^{2}}}{{{x}_{1}}} \right)$
Now, we have
$xy={{c}^{2}}\Rightarrow y=\dfrac{{{c}^{2}}}{x}$
Differentiating both sides with respect to x to get the slope of the tangent at point (x,y) on the curve, we get
$\dfrac{dy}{dx}=\dfrac{-{{c}^{2}}}{{{x}^{2}}}$
Hence, we have the slope of the tangent at point P $={{\left. \dfrac{dy}{dx} \right|}_{x={{x}_{1}},y={{y}_{1}}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}$
Hence, we have
Equation of tangent using point slope form of equation of a line is
$y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( x-{{x }_{1}} \right)\text{ }\left( a \right)$
The points T and T’ lie on this line
For point T’, we have x = 0 since the point T’ lies on the y-axis.
Hence if we substitute x = 0 in the equation (a), we will get the y coordinate of point T’.
Substituting x = 0 in the equation (a), we get
$y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( -{{x}_{1}} \right)=\dfrac{{{c}^{2}}}{{{x}_{1}}}$
Adding $\dfrac{{{c}^{2}}}{{{x}_{1}}}$on both sides, we get
$y=\dfrac{2{{c}^{2}}}{{{x}_{1}}}$
Hence, we have
$T'\equiv \left( 0,\dfrac{2{{c}^{2}}}{{{x}_{1}}} \right)$
For point T, we have y = 0 since the point lies on the x-axis.
Hence if we substitute y = 0 in the equation (a), we will get the x-coordinate of the point T.
Substituting y = 0 in the equation (a), we get
$-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( x-{{x}_{1}} \right)$
Multiplying both sides by $\dfrac{-x_{1}^{2}}{{{c}^{2}}}$, we get
${{x}_{1}}=x-{{x}_{1}}$
Adding ${{x}_{1}}$ on both sides, we get
$x=2{{x}_{1}}$
Hence, we have
$T\equiv \left( 2{{x}_{1}},0 \right)$
Let m be the slope of the normal.
We know that if the slope of two perpendicular lines are ${{m}_{1}}$ and ${{m}_{2}}$, then ${{m}_{1}}{{m}_{2}}=-1$
Hence, we have
$m\times \left( \dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}} \right)=-1$
Multiplying both sides by $\dfrac{-x_{1}^{2}}{{{c}^{2}}}$, we get
$m=\dfrac{x_{1}^{2}}{{{c}^{2}}}$
Hence, we have
$y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( x-{{x}_{1}} \right)\text{ }\left( b \right)$
The points N and N’ lie on this line.
For point N’, we have x = 0, since the point lies on the y-axis.
Hence if we substitute x = 0 in equation b, we will get the y-coordinate of the point N’.
Substituting x = 0 in equation (b), we get
$\begin{align}
& y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( -{{x}_{1}} \right) \\
& \Rightarrow y=\dfrac{{{c}^{2}}}{{{x}_{1}}}-\dfrac{x_{1}^{3}}{{{c}^{2}}}=\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \\
\end{align}$
Hence, we have
$N'\equiv \left( 0,\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \right)$
For point N, we have y = 0, since the point lies on the x-axis.
Hence if we substitute y = 0 in equation (b), we will get the x-coordinate of the point N.
Substituting y = 0 in equation (b), we get
$\begin{align}
& -\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( x-{{x}_{1}} \right) \\
& \Rightarrow x={{x}_{1}}-\dfrac{{{c}^{4}}}{x_{1}^{3}}=\dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}} \\
\end{align}$
Hence, we have
$N\equiv \left( \dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}},0 \right)$
Now, we know that the area of the triangle formed by the points $A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)$ and $C\left( {{x}_{3}},{{y}_{3}} \right)$ is given by
$A=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} \\
\end{matrix} \right|$
For triangle PNT, we have
$\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2{{x}_{1}},0 \right),\left( {{x}_{3}},{{y}_{3}} \right)=\left( \dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}},0 \right)$
Hence, we have
$\begin{align}
& \Delta =\dfrac{1}{2}\left| \begin{matrix}
2{{x}_{1}}-{{x}_{1}} & 0-{{y}_{1}} \\
\dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}}-{{x}_{1}} & 0-{{y}_{1}} \\
\end{matrix} \right|=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & -{{y}_{1}} \\
\dfrac{-{{c}^{4}}}{x_{1}^{3}} & -{{y}_{1}} \\
\end{matrix} \right| \\
& =\dfrac{1}{2}\left| {{x}_{1}}{{y}_{1}}+\dfrac{{{c}^{4}}}{x_{1}^{3}}{{y}_{1}} \right|=\dfrac{1}{2}\left| {{c}^{2}}+\dfrac{{{c}^{6}}}{x_{1}^{4}} \right|=\dfrac{{{c}^{2}}}{2x_{1}^{4}}\left( x_{1}^{4}+{{c}^{4}} \right) \\
\end{align}$
Similarly for triangle PN’T’, we have
$\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},\dfrac{{{c}^{2}}}{{{x}_{1}}} \right),\left( {{x}_{2}},{{y}_{2}} \right)=\left( 0,\dfrac{2{{c}^{2}}}{{{x}_{1}}} \right),\left( {{x}_{3}},{{y}_{3}} \right)=\left( 0,\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \right)$
Hence, we haves
$\begin{align}
& \Delta '=\dfrac{1}{2}\left| \begin{matrix}
0-{{x}_{1}} & \dfrac{2{{c}^{2}}}{{{x}_{1}}}-\dfrac{{{c}^{2}}}{{{x}_{1}}} \\
0-{{x}_{1}} & \dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}}-\dfrac{{{c}^{2}}}{{{x}_{1}}} \\
\end{matrix} \right|=\dfrac{1}{2}\left| \begin{matrix}
-{{x}_{1}} & \dfrac{{{c}^{2}}}{{{x}_{1}}} \\
-{{x}_{1}} & \dfrac{-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \\
\end{matrix} \right| \\
& =\dfrac{1}{2}\left| \dfrac{x_{1}^{4}}{{{c}^{2}}}+{{c}^{2}} \right|=\dfrac{1}{2{{c}^{2}}}\left( {{c}^{4}}+x_{1}^{4} \right) \\
\end{align}$
Hence, we have
$\dfrac{1}{\Delta }+\dfrac{1}{\Delta '}=\dfrac{2x_{1}^{4}}{{{c}^{2}}\left( x_{1}^{4}+{{c}^{4}} \right)}+\dfrac{2{{c}^{2}}}{x_{1}^{4}+{{c}^{4}}}=\dfrac{2}{{{c}^{2}}\left( x_{1}^{4}+{{c}^{4}} \right)}\left( x_{1}^{4}+{{c}^{4}} \right)=\dfrac{2}{{{c}^{2}}}$
Hence option [c] is correct.
Note: Alternatively, we can solve the question using the parametric form of the equation of hyperbola $xy={{c}^{2}}$ as $x=ct$ and $y=\dfrac{c}{t}$, where t is a parameter. This method will make the above calculations easier.
Complete step by step solution:
Let the $P\left( {{x}_{1}},{{y}_{1}} \right)$be a point on the curve $xy={{c}^{2}}$
Satifying the point on the curve, we have
$\begin{align}
& {{x}_{1}}{{y}_{1}}={{c}^{2}} \\
& \Rightarrow {{y}_{1}}=\dfrac{{{c}^{2}}}{{{x}_{1}}} \\
\end{align}$
Hence, we have
$P\equiv \left( {{x}_{1}},\dfrac{{{c}^{2}}}{{{x}_{1}}} \right)$
Now, we have
$xy={{c}^{2}}\Rightarrow y=\dfrac{{{c}^{2}}}{x}$
Differentiating both sides with respect to x to get the slope of the tangent at point (x,y) on the curve, we get
$\dfrac{dy}{dx}=\dfrac{-{{c}^{2}}}{{{x}^{2}}}$
Hence, we have the slope of the tangent at point P $={{\left. \dfrac{dy}{dx} \right|}_{x={{x}_{1}},y={{y}_{1}}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}$
Hence, we have
Equation of tangent using point slope form of equation of a line is
$y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( x-{{x }_{1}} \right)\text{ }\left( a \right)$
The points T and T’ lie on this line
For point T’, we have x = 0 since the point T’ lies on the y-axis.
Hence if we substitute x = 0 in the equation (a), we will get the y coordinate of point T’.
Substituting x = 0 in the equation (a), we get
$y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( -{{x}_{1}} \right)=\dfrac{{{c}^{2}}}{{{x}_{1}}}$
Adding $\dfrac{{{c}^{2}}}{{{x}_{1}}}$on both sides, we get
$y=\dfrac{2{{c}^{2}}}{{{x}_{1}}}$
Hence, we have
$T'\equiv \left( 0,\dfrac{2{{c}^{2}}}{{{x}_{1}}} \right)$
For point T, we have y = 0 since the point lies on the x-axis.
Hence if we substitute y = 0 in the equation (a), we will get the x-coordinate of the point T.
Substituting y = 0 in the equation (a), we get
$-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( x-{{x}_{1}} \right)$
Multiplying both sides by $\dfrac{-x_{1}^{2}}{{{c}^{2}}}$, we get
${{x}_{1}}=x-{{x}_{1}}$
Adding ${{x}_{1}}$ on both sides, we get
$x=2{{x}_{1}}$
Hence, we have
$T\equiv \left( 2{{x}_{1}},0 \right)$
Let m be the slope of the normal.
We know that if the slope of two perpendicular lines are ${{m}_{1}}$ and ${{m}_{2}}$, then ${{m}_{1}}{{m}_{2}}=-1$
Hence, we have
$m\times \left( \dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}} \right)=-1$
Multiplying both sides by $\dfrac{-x_{1}^{2}}{{{c}^{2}}}$, we get
$m=\dfrac{x_{1}^{2}}{{{c}^{2}}}$
Hence, we have
$y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( x-{{x}_{1}} \right)\text{ }\left( b \right)$
The points N and N’ lie on this line.
For point N’, we have x = 0, since the point lies on the y-axis.
Hence if we substitute x = 0 in equation b, we will get the y-coordinate of the point N’.
Substituting x = 0 in equation (b), we get
$\begin{align}
& y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( -{{x}_{1}} \right) \\
& \Rightarrow y=\dfrac{{{c}^{2}}}{{{x}_{1}}}-\dfrac{x_{1}^{3}}{{{c}^{2}}}=\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \\
\end{align}$
Hence, we have
$N'\equiv \left( 0,\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \right)$
For point N, we have y = 0, since the point lies on the x-axis.
Hence if we substitute y = 0 in equation (b), we will get the x-coordinate of the point N.
Substituting y = 0 in equation (b), we get
$\begin{align}
& -\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( x-{{x}_{1}} \right) \\
& \Rightarrow x={{x}_{1}}-\dfrac{{{c}^{4}}}{x_{1}^{3}}=\dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}} \\
\end{align}$
Hence, we have
$N\equiv \left( \dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}},0 \right)$
Now, we know that the area of the triangle formed by the points $A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)$ and $C\left( {{x}_{3}},{{y}_{3}} \right)$ is given by
$A=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} \\
\end{matrix} \right|$
For triangle PNT, we have
$\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2{{x}_{1}},0 \right),\left( {{x}_{3}},{{y}_{3}} \right)=\left( \dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}},0 \right)$
Hence, we have
$\begin{align}
& \Delta =\dfrac{1}{2}\left| \begin{matrix}
2{{x}_{1}}-{{x}_{1}} & 0-{{y}_{1}} \\
\dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}}-{{x}_{1}} & 0-{{y}_{1}} \\
\end{matrix} \right|=\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & -{{y}_{1}} \\
\dfrac{-{{c}^{4}}}{x_{1}^{3}} & -{{y}_{1}} \\
\end{matrix} \right| \\
& =\dfrac{1}{2}\left| {{x}_{1}}{{y}_{1}}+\dfrac{{{c}^{4}}}{x_{1}^{3}}{{y}_{1}} \right|=\dfrac{1}{2}\left| {{c}^{2}}+\dfrac{{{c}^{6}}}{x_{1}^{4}} \right|=\dfrac{{{c}^{2}}}{2x_{1}^{4}}\left( x_{1}^{4}+{{c}^{4}} \right) \\
\end{align}$
Similarly for triangle PN’T’, we have
$\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},\dfrac{{{c}^{2}}}{{{x}_{1}}} \right),\left( {{x}_{2}},{{y}_{2}} \right)=\left( 0,\dfrac{2{{c}^{2}}}{{{x}_{1}}} \right),\left( {{x}_{3}},{{y}_{3}} \right)=\left( 0,\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \right)$
Hence, we haves
$\begin{align}
& \Delta '=\dfrac{1}{2}\left| \begin{matrix}
0-{{x}_{1}} & \dfrac{2{{c}^{2}}}{{{x}_{1}}}-\dfrac{{{c}^{2}}}{{{x}_{1}}} \\
0-{{x}_{1}} & \dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}}-\dfrac{{{c}^{2}}}{{{x}_{1}}} \\
\end{matrix} \right|=\dfrac{1}{2}\left| \begin{matrix}
-{{x}_{1}} & \dfrac{{{c}^{2}}}{{{x}_{1}}} \\
-{{x}_{1}} & \dfrac{-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \\
\end{matrix} \right| \\
& =\dfrac{1}{2}\left| \dfrac{x_{1}^{4}}{{{c}^{2}}}+{{c}^{2}} \right|=\dfrac{1}{2{{c}^{2}}}\left( {{c}^{4}}+x_{1}^{4} \right) \\
\end{align}$
Hence, we have
$\dfrac{1}{\Delta }+\dfrac{1}{\Delta '}=\dfrac{2x_{1}^{4}}{{{c}^{2}}\left( x_{1}^{4}+{{c}^{4}} \right)}+\dfrac{2{{c}^{2}}}{x_{1}^{4}+{{c}^{4}}}=\dfrac{2}{{{c}^{2}}\left( x_{1}^{4}+{{c}^{4}} \right)}\left( x_{1}^{4}+{{c}^{4}} \right)=\dfrac{2}{{{c}^{2}}}$
Hence option [c] is correct.
Note: Alternatively, we can solve the question using the parametric form of the equation of hyperbola $xy={{c}^{2}}$ as $x=ct$ and $y=\dfrac{c}{t}$, where t is a parameter. This method will make the above calculations easier.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

