
The sum to infinity of the series $1 + \dfrac{2}{3} + \dfrac{6}{{{3^2}}} + \dfrac{{10}}{{{3^3}}} + \dfrac{{14}}{{{3^4}}} + ....$ is:
$\left( a \right)2$
$\left( b \right)3$
$\left( c \right)4$
$\left( d \right)6$
Answer
509.7k+ views
Hint: In this particular question first find out which trend is following the given series i.e. whether it is following the arithmetic series, geometric series, or harmonic series after identifying use directly the formula of the sum of an infinite series so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given series
$1 + \dfrac{2}{3} + \dfrac{6}{{{3^2}}} + \dfrac{{10}}{{{3^3}}} + \dfrac{{14}}{{{3^4}}} + ....$
Let, $S = 1 + \dfrac{2}{3} + \dfrac{6}{{{3^2}}} + \dfrac{{10}}{{{3^3}}} + \dfrac{{14}}{{{3^4}}} + ....$.................... (1)
Now divide by 3 throughout in equation (1) we have,
$ \Rightarrow \dfrac{S}{3} = \dfrac{1}{3} + \dfrac{2}{{{3^2}}} + \dfrac{6}{{{3^3}}} + \dfrac{{10}}{{{3^4}}} + \dfrac{{14}}{{{3^5}}} + ....$................. (2)
Now subtract equation (2) from equation (1) we have,
$ \Rightarrow S - \dfrac{S}{3} = \left( {1 + \dfrac{2}{3} + \dfrac{6}{{{3^2}}} + \dfrac{{10}}{{{3^3}}} + \dfrac{{14}}{{{3^4}}} + ....} \right) - \left( {\dfrac{1}{3} + \dfrac{2}{{{3^2}}} + \dfrac{6}{{{3^3}}} + \dfrac{{10}}{{{3^4}}} + \dfrac{{14}}{{{3^5}}} + ....} \right)$
$ \Rightarrow \dfrac{{2S}}{3} = \left( 1 \right) + \left( {\dfrac{2}{3} - \dfrac{1}{3}} \right) + \left( {\dfrac{6}{{{3^2}}} - \dfrac{2}{{{3^2}}}} \right) + \left( {\dfrac{{10}}{{{3^3}}} - \dfrac{6}{{{3^3}}}} \right) + \left( {\dfrac{{14}}{{{3^4}}} - \dfrac{{10}}{{{3^4}}}} \right) + ........\infty $
Now simplify it we have,
$ \Rightarrow \dfrac{{2S}}{3} = \left( 1 \right) + \left( {\dfrac{1}{3}} \right) + \left( {\dfrac{4}{{{3^2}}}} \right) + \left( {\dfrac{4}{{{3^3}}}} \right) + \left( {\dfrac{4}{{{3^4}}}} \right) + ........\infty $
$ \Rightarrow \dfrac{{2S}}{3} = \left( {\dfrac{4}{3}} \right) + \left( {\dfrac{4}{{{3^2}}}} \right) + \left( {\dfrac{4}{{{3^3}}}} \right) + \left( {\dfrac{4}{{{3^4}}}} \right) + ........\infty $
$ \Rightarrow S = \dfrac{3}{2}\left[ {\left( {\dfrac{4}{3}} \right) + \left( {\dfrac{4}{{{3^2}}}} \right) + \left( {\dfrac{4}{{{3^3}}}} \right) + \left( {\dfrac{4}{{{3^4}}}} \right) + ........\infty } \right]$
Now take $\dfrac{4}{3}$ common we have,
\[ \Rightarrow S = \dfrac{3}{2} \times \dfrac{4}{3}\left[ {1 + \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + ........\infty } \right]\]
\[ \Rightarrow S = 2\left[ {1 + \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + ........\infty } \right]\]
So the common ratio of the above series is $\dfrac{{\dfrac{1}{3}}}{1} = \dfrac{1}{3},\dfrac{{\dfrac{1}{{{3^2}}}}}{{\dfrac{1}{3}}} = \dfrac{1}{3}$
So, as we see that the above series follow the trend of geometric progression with a constant common ratio.
Where the first term of the series is, a = 1, common ratio, r = $\dfrac{1}{3}$.
Now as we know that the formula of the sum of the infinite series of a G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$, where a = first term and d = common ratio.
Now substitute the values in the above equation we have,
$ \Rightarrow {S_\infty } = 2\left( {\dfrac{1}{{1 - \dfrac{1}{3}}}} \right) = 2\left( {\dfrac{1}{{\dfrac{{3 - 1}}{3}}}} \right) = 2\left( {\dfrac{3}{2}} \right) = 3$
So this is the required sum to infinity of the given series.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the sum of an infinite G.P series which is stated above, so simplify substitute the values of the first term and common ratio in the formula and simplify as above we will get the required answer. Here the given series is not in G.P so after doing some operations on the given series we convert this into a standard form of G.P and then find a common ratio.
Complete step-by-step solution:
Given series
$1 + \dfrac{2}{3} + \dfrac{6}{{{3^2}}} + \dfrac{{10}}{{{3^3}}} + \dfrac{{14}}{{{3^4}}} + ....$
Let, $S = 1 + \dfrac{2}{3} + \dfrac{6}{{{3^2}}} + \dfrac{{10}}{{{3^3}}} + \dfrac{{14}}{{{3^4}}} + ....$.................... (1)
Now divide by 3 throughout in equation (1) we have,
$ \Rightarrow \dfrac{S}{3} = \dfrac{1}{3} + \dfrac{2}{{{3^2}}} + \dfrac{6}{{{3^3}}} + \dfrac{{10}}{{{3^4}}} + \dfrac{{14}}{{{3^5}}} + ....$................. (2)
Now subtract equation (2) from equation (1) we have,
$ \Rightarrow S - \dfrac{S}{3} = \left( {1 + \dfrac{2}{3} + \dfrac{6}{{{3^2}}} + \dfrac{{10}}{{{3^3}}} + \dfrac{{14}}{{{3^4}}} + ....} \right) - \left( {\dfrac{1}{3} + \dfrac{2}{{{3^2}}} + \dfrac{6}{{{3^3}}} + \dfrac{{10}}{{{3^4}}} + \dfrac{{14}}{{{3^5}}} + ....} \right)$
$ \Rightarrow \dfrac{{2S}}{3} = \left( 1 \right) + \left( {\dfrac{2}{3} - \dfrac{1}{3}} \right) + \left( {\dfrac{6}{{{3^2}}} - \dfrac{2}{{{3^2}}}} \right) + \left( {\dfrac{{10}}{{{3^3}}} - \dfrac{6}{{{3^3}}}} \right) + \left( {\dfrac{{14}}{{{3^4}}} - \dfrac{{10}}{{{3^4}}}} \right) + ........\infty $
Now simplify it we have,
$ \Rightarrow \dfrac{{2S}}{3} = \left( 1 \right) + \left( {\dfrac{1}{3}} \right) + \left( {\dfrac{4}{{{3^2}}}} \right) + \left( {\dfrac{4}{{{3^3}}}} \right) + \left( {\dfrac{4}{{{3^4}}}} \right) + ........\infty $
$ \Rightarrow \dfrac{{2S}}{3} = \left( {\dfrac{4}{3}} \right) + \left( {\dfrac{4}{{{3^2}}}} \right) + \left( {\dfrac{4}{{{3^3}}}} \right) + \left( {\dfrac{4}{{{3^4}}}} \right) + ........\infty $
$ \Rightarrow S = \dfrac{3}{2}\left[ {\left( {\dfrac{4}{3}} \right) + \left( {\dfrac{4}{{{3^2}}}} \right) + \left( {\dfrac{4}{{{3^3}}}} \right) + \left( {\dfrac{4}{{{3^4}}}} \right) + ........\infty } \right]$
Now take $\dfrac{4}{3}$ common we have,
\[ \Rightarrow S = \dfrac{3}{2} \times \dfrac{4}{3}\left[ {1 + \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + ........\infty } \right]\]
\[ \Rightarrow S = 2\left[ {1 + \dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + ........\infty } \right]\]
So the common ratio of the above series is $\dfrac{{\dfrac{1}{3}}}{1} = \dfrac{1}{3},\dfrac{{\dfrac{1}{{{3^2}}}}}{{\dfrac{1}{3}}} = \dfrac{1}{3}$
So, as we see that the above series follow the trend of geometric progression with a constant common ratio.
Where the first term of the series is, a = 1, common ratio, r = $\dfrac{1}{3}$.
Now as we know that the formula of the sum of the infinite series of a G.P is given as,
$ \Rightarrow {S_\infty } = \dfrac{a}{{1 - r}}$, where a = first term and d = common ratio.
Now substitute the values in the above equation we have,
$ \Rightarrow {S_\infty } = 2\left( {\dfrac{1}{{1 - \dfrac{1}{3}}}} \right) = 2\left( {\dfrac{1}{{\dfrac{{3 - 1}}{3}}}} \right) = 2\left( {\dfrac{3}{2}} \right) = 3$
So this is the required sum to infinity of the given series.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the sum of an infinite G.P series which is stated above, so simplify substitute the values of the first term and common ratio in the formula and simplify as above we will get the required answer. Here the given series is not in G.P so after doing some operations on the given series we convert this into a standard form of G.P and then find a common ratio.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
