
The sum to infinity of the series
\[1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;{\text{is}}{\text{.}}\]
Answer
578.4k+ views
Hint: Here, we will use the concept of sum of the infinite series of geometry progression i.e. GP. The sum of infinite series of a GP is possible only under certain conditions, otherwise the series will diverge and the sum will be infinity.
Complete step by step solution: Let the given Equation be S.
\[{\text{S}} = 1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^2} + 14{\text{/}}{3^2} + ...\;({\text{i)}}\]
First we need to check whether it is an AP series or GP. Series.
Looking at the pattern of the series, the numerator is AP. With a common difference of 4 and denominator is in GP. With a common ratio 3.
To make it a perfect, we divide equation (i) on both sides by 3.
\[\begin{gathered}
\dfrac{{\text{S}}}{3} = \dfrac{{\left( {1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;\infty } \right)}}{3} \\
\\
\dfrac{{\text{S}}}{3} = \dfrac{1}{3} + 2{\text{/}}{3^2} + 6{\text{/}}{3^3} + 10{\text{/}}{3^4} + 14{\text{/}}{3^5} + ...\;\infty \;\;\;\;\;({\text{ii}}) \\
\end{gathered} \]
For getting the perfect pattern out of these equations.
We subtract eq. (ii) from eq. (i).
\[\begin{gathered}
{\text{S}} - {\text{S/}}3 = \left( {1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;\infty } \right) \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {1{\text{/}}3 + 2{\text{/}}{3^2} + 6{\text{/}}{3^3} + 10{\text{/}}{3^4} + ...\;\infty } \right) \\
\\
= \dfrac{{25}}{3} = 1 + \left( {2{\text{/3}} - 1{\text{/3}}} \right) + \left( {6{\text{/}}{{\text{3}}^2} - 2{\text{/}}{{\text{3}}^2}} \right) + \left( {10{\text{/}}{{\text{3}}^3} - 6{\text{/}}{{\text{3}}^3}} \right) + ...\;\infty \\
= \dfrac{{25}}{3} = 1 + \dfrac{1}{3} + 4{\text{/}}{3^2} + 4{\text{/}}{3^3} + 4{\text{/}}{3^4} + ...\;\infty \\
{\text{S}} = \dfrac{3}{2}1 + 1{\text{/}}3 + 4{\text{/}}{3^2} + 4{\text{/}}{3^2} + 4{\text{/}}{3^4} + ...\;\infty \\
= {\text{S}} = \dfrac{{3 + 1}}{2} + \dfrac{2}{3} + \dfrac{2}{{{3^2}}} + \dfrac{2}{{{3^3}}} + \dfrac{2}{{{3^4}}} + ...\;\infty \\
= {\text{S}} = 2 + 2{\text{/}}3 + 2{\text{/}}{3^2} + 2{\text{/}}{3^3} + 2{\text{/}}{3^4} + ...\;\infty \\
= {\text{S}} = 2{\text{/}}{3^0} + 2{\text{/}}{3^1} + 2{\text{/}}{3^2} + 2{\text{/}}{3^3} + 2{\text{/}}{3^4}...\;\infty \;\;\;\;({\text{iii}}) \\
\end{gathered} \]
The above equation i.e. eq. (iii) is in the GP. Of infinite terms
here the common ratio of the equation is
\[ = \dfrac{{2{\text{/}}{{\text{3}}^1}}}{{2{\text{/}}{{\text{3}}^0}}} = \dfrac{{2{\text{/3}}}}{{2{\text{/1}}}} = \dfrac{2}{3} \times \dfrac{1}{2} = \dfrac{1}{3}\]
\[\therefore \]common ratio =\[\dfrac{1}{3}\];
(because in a GP. a, ar, ar2. Common ratio = \[\dfrac{{ar}}{a} = r\])
Now, sum of the infinite series is GP is
\[{\text{S}}\infty = \dfrac{a}{{a - r}}\;;\] where O< r < l and
a id the first term of the GP and r this common ratio of an infinite GP.
So, \[{\text{S}} = \dfrac{2}{{1 - 1{\text{/}}3}}\;\]
$\Rightarrow \text{S}=\dfrac{2}{\dfrac{2}{3}}$
$\Rightarrow \text{S}={2}\times \dfrac{3}{2}$
$\Rightarrow \text{S}=3$
Sum of the infinite series is 3.
Note: In this type of question, we will check for AP and GP them accordingly to solve the equation and numbers the sum formula for infinite series that is very important. In higher studies we’ll come across many infinite series. Some of them will be convergent means sum will be finite and some of them will be divergent means sum will be infinite. The famous example is $\dfrac{1}{{x}^{\text{p}}}$. this series is convergent for $\text{p}>1$ and convergent for $\text{p}<1$.
Complete step by step solution: Let the given Equation be S.
\[{\text{S}} = 1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^2} + 14{\text{/}}{3^2} + ...\;({\text{i)}}\]
First we need to check whether it is an AP series or GP. Series.
Looking at the pattern of the series, the numerator is AP. With a common difference of 4 and denominator is in GP. With a common ratio 3.
To make it a perfect, we divide equation (i) on both sides by 3.
\[\begin{gathered}
\dfrac{{\text{S}}}{3} = \dfrac{{\left( {1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;\infty } \right)}}{3} \\
\\
\dfrac{{\text{S}}}{3} = \dfrac{1}{3} + 2{\text{/}}{3^2} + 6{\text{/}}{3^3} + 10{\text{/}}{3^4} + 14{\text{/}}{3^5} + ...\;\infty \;\;\;\;\;({\text{ii}}) \\
\end{gathered} \]
For getting the perfect pattern out of these equations.
We subtract eq. (ii) from eq. (i).
\[\begin{gathered}
{\text{S}} - {\text{S/}}3 = \left( {1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;\infty } \right) \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {1{\text{/}}3 + 2{\text{/}}{3^2} + 6{\text{/}}{3^3} + 10{\text{/}}{3^4} + ...\;\infty } \right) \\
\\
= \dfrac{{25}}{3} = 1 + \left( {2{\text{/3}} - 1{\text{/3}}} \right) + \left( {6{\text{/}}{{\text{3}}^2} - 2{\text{/}}{{\text{3}}^2}} \right) + \left( {10{\text{/}}{{\text{3}}^3} - 6{\text{/}}{{\text{3}}^3}} \right) + ...\;\infty \\
= \dfrac{{25}}{3} = 1 + \dfrac{1}{3} + 4{\text{/}}{3^2} + 4{\text{/}}{3^3} + 4{\text{/}}{3^4} + ...\;\infty \\
{\text{S}} = \dfrac{3}{2}1 + 1{\text{/}}3 + 4{\text{/}}{3^2} + 4{\text{/}}{3^2} + 4{\text{/}}{3^4} + ...\;\infty \\
= {\text{S}} = \dfrac{{3 + 1}}{2} + \dfrac{2}{3} + \dfrac{2}{{{3^2}}} + \dfrac{2}{{{3^3}}} + \dfrac{2}{{{3^4}}} + ...\;\infty \\
= {\text{S}} = 2 + 2{\text{/}}3 + 2{\text{/}}{3^2} + 2{\text{/}}{3^3} + 2{\text{/}}{3^4} + ...\;\infty \\
= {\text{S}} = 2{\text{/}}{3^0} + 2{\text{/}}{3^1} + 2{\text{/}}{3^2} + 2{\text{/}}{3^3} + 2{\text{/}}{3^4}...\;\infty \;\;\;\;({\text{iii}}) \\
\end{gathered} \]
The above equation i.e. eq. (iii) is in the GP. Of infinite terms
here the common ratio of the equation is
\[ = \dfrac{{2{\text{/}}{{\text{3}}^1}}}{{2{\text{/}}{{\text{3}}^0}}} = \dfrac{{2{\text{/3}}}}{{2{\text{/1}}}} = \dfrac{2}{3} \times \dfrac{1}{2} = \dfrac{1}{3}\]
\[\therefore \]common ratio =\[\dfrac{1}{3}\];
(because in a GP. a, ar, ar2. Common ratio = \[\dfrac{{ar}}{a} = r\])
Now, sum of the infinite series is GP is
\[{\text{S}}\infty = \dfrac{a}{{a - r}}\;;\] where O< r < l and
a id the first term of the GP and r this common ratio of an infinite GP.
So, \[{\text{S}} = \dfrac{2}{{1 - 1{\text{/}}3}}\;\]
$\Rightarrow \text{S}=\dfrac{2}{\dfrac{2}{3}}$
$\Rightarrow \text{S}={2}\times \dfrac{3}{2}$
$\Rightarrow \text{S}=3$
Sum of the infinite series is 3.
Note: In this type of question, we will check for AP and GP them accordingly to solve the equation and numbers the sum formula for infinite series that is very important. In higher studies we’ll come across many infinite series. Some of them will be convergent means sum will be finite and some of them will be divergent means sum will be infinite. The famous example is $\dfrac{1}{{x}^{\text{p}}}$. this series is convergent for $\text{p}>1$ and convergent for $\text{p}<1$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

