
The sum of the series $\dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + .....$ up to $11$ terms is
A) $\dfrac{{120}}{{121}}$
B) $\dfrac{{143}}{{144}}$
C) $1$
D) $\dfrac{{144}}{{143}}$
Answer
493.2k+ views
Hint: First we have to deduce the given series in the form of a sequence that it follows in order to find the ${n^{th}}$ term of the series. Then, we simplify the terms to make it easier for us to add them. Then, we can find the sum of the terms with a much simpler footprint that would be easier to calculate for us and then find the sum up to the required number of terms.
Complete step by step answer:
Let the sum of the series be denoted as ${S_n}$.
So, given, ${S_n} = \dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + .....$
We can write it as,
${S_n} = \dfrac{{\left( {2.1 + 1} \right)}}{{\left( {{1^2}{{.2}^2}} \right)}} + \dfrac{{\left( {2.2 + 1} \right)}}{{\left( {{2^2}{{.3}^2}} \right)}} + \dfrac{{\left( {2.3 + 1} \right)}}{{\left( {{3^2}{{.4}^2}} \right)}} + ....$
Thus, by observing the pattern of the terms of the series we can conclude that, ${n^{th}}$ term, ${T_n} = \dfrac{{\left( {2.n + 1} \right)}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}$
Now, adding and subtracting ${n^2}$ in the numerator, we get,
$ \Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 2.n + 1 - {n^2}} \right)}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}$
Simplifying the expression, we get,
$ \Rightarrow {T_n} = \dfrac{{\left[ {\left( {{n^2} + 2.n + {1^2}} \right) - {n^2}} \right]}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}$
We know, ${(a + b)^2} = {a^2} + 2ab + {b^2}$, using this algebraic identity, we get,
$ \Rightarrow {T_n} = \dfrac{{\left[ {{{\left( {n + 1} \right)}^2} - {n^2}} \right]}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}$
Now, diving each term in the numerator by the denominator, we get,
$ \Rightarrow {T_n} = \dfrac{{{{\left( {n + 1} \right)}^2}}}{{{n^2}.{{\left( {n + 1} \right)}^2}}} - \dfrac{{{n^2}}}{{{n^2}.{{\left( {n + 1} \right)}^2}}}$
$ \Rightarrow {T_n} = \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$
Now, putting $n = 1,2,3,4......$up to $n$ terms, we get,
$\Rightarrow {T_1} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{{{\left( {1 + 1} \right)}^2}}} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}}$
$\Rightarrow {T_2} = \dfrac{1}{{{2^2}}} - \dfrac{1}{{{{\left( {2 + 1} \right)}^2}}} = \dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}$
$ \Rightarrow {T_3} = \dfrac{1}{{{3^2}}} - \dfrac{1}{{{{\left( {3 + 1} \right)}^2}}} = \dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}$
$\Rightarrow {T_4} = \dfrac{1}{{{4^2}}} - \dfrac{1}{{{{\left( {4 + 1} \right)}^2}}} = \dfrac{1}{{{4^2}}} - \dfrac{1}{{{5^2}}}$ and so on.
Hence, ${T_n} = \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$
Now, adding all the terms up to $n$ terms, we get,
${S_n} = {T_1} + {T_2} + {T_3} + ...... + {T_n}$
$ \Rightarrow {S_n} = \left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}}} \right) + \left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) + \left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}} \right) + ..... + \left( {\dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}} \right)$
$ \Rightarrow {S_n} = 1 - \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}} + ..... + \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$
Here, we can clearly observe that, all the terms have their negative counterparts and gets cancelled, except, $1$ and $\dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$.
So, we get,
$ \Rightarrow {S_n} = 1 - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$
As per the question, we are to find the sum up to ${11^{th}}$ term.
Therefore, ${S_{11}} = 1 - \dfrac{1}{{{{\left( {11 + 1} \right)}^2}}}$
$ \Rightarrow {S_{11}} = 1 - \dfrac{1}{{{{\left( {12} \right)}^2}}}$
$ \Rightarrow {S_{11}} = 1 - \dfrac{1}{{144}}$
Simplifying the equation, we get,
$ \Rightarrow {S_{11}} = \dfrac{{144 - 1}}{{144}}$
$ \Rightarrow {S_{11}} = \dfrac{{143}}{{144}}$
Therefore, the sum of the series up to ${11^{th}}$ term is $\dfrac{{143}}{{144}}$.
Note: The sum of series gives us the idea where the series may converge to. Deduction of the terms gives us the idea about a particular term, where it may be in the series. The sum of series is also used to know how many terms are to be used in order to reach a particular value. We must know the methodology for solving such types of questions.
Complete step by step answer:
Let the sum of the series be denoted as ${S_n}$.
So, given, ${S_n} = \dfrac{3}{4} + \dfrac{5}{{36}} + \dfrac{7}{{144}} + .....$
We can write it as,
${S_n} = \dfrac{{\left( {2.1 + 1} \right)}}{{\left( {{1^2}{{.2}^2}} \right)}} + \dfrac{{\left( {2.2 + 1} \right)}}{{\left( {{2^2}{{.3}^2}} \right)}} + \dfrac{{\left( {2.3 + 1} \right)}}{{\left( {{3^2}{{.4}^2}} \right)}} + ....$
Thus, by observing the pattern of the terms of the series we can conclude that, ${n^{th}}$ term, ${T_n} = \dfrac{{\left( {2.n + 1} \right)}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}$
Now, adding and subtracting ${n^2}$ in the numerator, we get,
$ \Rightarrow {T_n} = \dfrac{{\left( {{n^2} + 2.n + 1 - {n^2}} \right)}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}$
Simplifying the expression, we get,
$ \Rightarrow {T_n} = \dfrac{{\left[ {\left( {{n^2} + 2.n + {1^2}} \right) - {n^2}} \right]}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}$
We know, ${(a + b)^2} = {a^2} + 2ab + {b^2}$, using this algebraic identity, we get,
$ \Rightarrow {T_n} = \dfrac{{\left[ {{{\left( {n + 1} \right)}^2} - {n^2}} \right]}}{{\left[ {{n^2}.{{\left( {n + 1} \right)}^2}} \right]}}$
Now, diving each term in the numerator by the denominator, we get,
$ \Rightarrow {T_n} = \dfrac{{{{\left( {n + 1} \right)}^2}}}{{{n^2}.{{\left( {n + 1} \right)}^2}}} - \dfrac{{{n^2}}}{{{n^2}.{{\left( {n + 1} \right)}^2}}}$
$ \Rightarrow {T_n} = \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$
Now, putting $n = 1,2,3,4......$up to $n$ terms, we get,
$\Rightarrow {T_1} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{{{\left( {1 + 1} \right)}^2}}} = \dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}}$
$\Rightarrow {T_2} = \dfrac{1}{{{2^2}}} - \dfrac{1}{{{{\left( {2 + 1} \right)}^2}}} = \dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}$
$ \Rightarrow {T_3} = \dfrac{1}{{{3^2}}} - \dfrac{1}{{{{\left( {3 + 1} \right)}^2}}} = \dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}$
$\Rightarrow {T_4} = \dfrac{1}{{{4^2}}} - \dfrac{1}{{{{\left( {4 + 1} \right)}^2}}} = \dfrac{1}{{{4^2}}} - \dfrac{1}{{{5^2}}}$ and so on.
Hence, ${T_n} = \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$
Now, adding all the terms up to $n$ terms, we get,
${S_n} = {T_1} + {T_2} + {T_3} + ...... + {T_n}$
$ \Rightarrow {S_n} = \left( {\dfrac{1}{{{1^2}}} - \dfrac{1}{{{2^2}}}} \right) + \left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}}} \right) + \left( {\dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}}} \right) + ..... + \left( {\dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}} \right)$
$ \Rightarrow {S_n} = 1 - \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^2}}} - \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^2}}} - \dfrac{1}{{{4^2}}} + ..... + \dfrac{1}{{{n^2}}} - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$
Here, we can clearly observe that, all the terms have their negative counterparts and gets cancelled, except, $1$ and $\dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$.
So, we get,
$ \Rightarrow {S_n} = 1 - \dfrac{1}{{{{\left( {n + 1} \right)}^2}}}$
As per the question, we are to find the sum up to ${11^{th}}$ term.
Therefore, ${S_{11}} = 1 - \dfrac{1}{{{{\left( {11 + 1} \right)}^2}}}$
$ \Rightarrow {S_{11}} = 1 - \dfrac{1}{{{{\left( {12} \right)}^2}}}$
$ \Rightarrow {S_{11}} = 1 - \dfrac{1}{{144}}$
Simplifying the equation, we get,
$ \Rightarrow {S_{11}} = \dfrac{{144 - 1}}{{144}}$
$ \Rightarrow {S_{11}} = \dfrac{{143}}{{144}}$
Therefore, the sum of the series up to ${11^{th}}$ term is $\dfrac{{143}}{{144}}$.
Note: The sum of series gives us the idea where the series may converge to. Deduction of the terms gives us the idea about a particular term, where it may be in the series. The sum of series is also used to know how many terms are to be used in order to reach a particular value. We must know the methodology for solving such types of questions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

