
The sum of the series $2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}$ is equal to:
(a) ${{2}^{24}}$
(b) ${{2}^{25}}$
(c) ${{2}^{26}}$
(d) ${{2}^{23}}$
Answer
572.7k+ views
Hint: We will first rearrange the series $2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}$ into a similar expression and then we will try to find its sum with the original series. Then after using the formula $\sum\limits_{0\le k\le n}{{}^{n}{{C}_{k}}}={{2}^{n}}$ of the sum of the nth row, we will try to find the sum of the series.
Complete step-by-step solution:
We know from the properties of combinations that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Then, for the terms given in the expression mentioned in the question,
$\begin{align}
&\Rightarrow {}^{20}{{C}_{0}}={}^{20}{{C}_{20-0}}={}^{20}{{C}_{20}} \\
&\Rightarrow {}^{20}{{C}_{1}}={}^{20}{{C}_{20-1}}={}^{20}{{C}_{19}} \\
&\Rightarrow {}^{20}{{C}_{2}}={}^{20}{{C}_{20-2}}={}^{20}{{C}_{18}} \\
&\Rightarrow {}^{20}{{C}_{3}}={}^{20}{{C}_{20-3}}={}^{20}{{C}_{17}} \\
\end{align}$
And so on...
We should also recall that $\sum\limits_{0\le k\le n}{{}^{n}{{C}_{k}}}={{2}^{n}}$
\[\Rightarrow {}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}+\cdots +{}^{n}{{C}_{n}}={{2}^{n}}\text{ }\cdots \left( i \right)\]
Let us write the sum as $S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}$
Then it can also be written as $S=2{}^{20}{{C}_{20}}+5{}^{20}{{C}_{19}}+8{}^{20}{{C}_{18}}+11{}^{20}{{C}_{17}}+\cdots +62{}^{20}{{C}_{0}}$
This can also be arranged as $S=62{}^{20}{{C}_{20}}+59{}^{20}{{C}_{19}}+\cdots +2{}^{20}{{C}_{0}}$
Two rearrangements of S can be found as
$\begin{align}
& S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}} \\
& S=62{}^{20}{{C}_{20}}+59{}^{20}{{C}_{19}}+\cdots +2{}^{20}{{C}_{0}} \\
\end{align}$
Adding them, we get
$\begin{align}
&\Rightarrow S+S=\left( 2+62 \right){}^{20}{{C}_{20}}+\left( 5+59 \right){}^{20}{{C}_{19}}+\cdots +\left( 2+62 \right){}^{20}{{C}_{0}} \\
&\Rightarrow 2S=64{}^{20}{{C}_{20}}+64{}^{20}{{C}_{19}}+\cdots +64{}^{20}{{C}_{0}} \\
& =64\left( {}^{20}{{C}_{20}}+{}^{20}{{C}_{19}}+\cdots +{}^{20}{{C}_{0}} \right)
\end{align}$
Putting the value of equation (i) in above equation, we get
$\begin{align}
&\Rightarrow 2S=64\left( {}^{20}{{C}_{20}}+{}^{20}{{C}_{19}}+\cdots+{}^{20}{{C}_{0}} \right) \\
&\Rightarrow 2S=64\times {{2}^{20}} \\
&\Rightarrow S=32\times {{2}^{20}} \\
& ={{2}^{5}}\times {{2}^{20}}={{2}^{25}}
\end{align}$
Hence, option (c) is correct.
Note: Let us recall the definition of factorial notation and combinations.
The factorial notation is denoted by $n!$ or $\left| \!{\underline {\,
n \,}} \right. $ and is defined as the product of first n natural numbers, that is, $n!=1\times 2\times 3\times \cdots \times n$
The number of combinations of n different objects taken r at a time, is denoted by ${}^{n}{{C}_{r}}$ and is defined by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
Another way to solve this question is,
Given $S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}$
Clearly, 2,5,8,... follows the pattern of 3r+2 where r=0, 1, 2, ...
Thus, the given series can be written as
$S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}$
Putting $3r+2$ in the above expression, we get
$S=\sum\limits_{r=0}^{20}{\left( 3r+2 \right)}{}^{20}{{C}_{r}}$
Solving it further, we get
$\begin{align}
& S=\sum\limits_{r=0}^{20}{3r\left( {}^{20}{{C}_{r}} \right)}+\sum\limits_{r=0}^{20}{2\left( {}^{20}{{C}_{r}} \right)} \\
& =3\sum\limits_{r=0}^{20}{r\left( {}^{20}{{C}_{r}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)}
\end{align}$
We know, ${}^{n}{{C}_{r}}=\dfrac{n}{r}{}^{n-1}{{C}_{r-1}}$
Putting this value in above expression, we get
$S=3\sum\limits_{r=0}^{20}{r\left( \dfrac{20}{r} \right)\left( {}^{19}{{C}_{r-1}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)}$
Solving it further, we get
$\begin{align}
& S=3\times 20\sum\limits_{r=0}^{20}{\left( {}^{19}{{C}_{r-1}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)} \\
& =60\times {{2}^{19}}+2\times {{2}^{20}} \\
& =\left( 60+4 \right)\times {{2}^{19}}=64\times {{2}^{19}}={{2}^{6}}\times {{2}^{19}}={{2}^{25}}
\end{align}$
Hence, the sum of the series is ${{2}^{25}}$.
Complete step-by-step solution:
We know from the properties of combinations that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Then, for the terms given in the expression mentioned in the question,
$\begin{align}
&\Rightarrow {}^{20}{{C}_{0}}={}^{20}{{C}_{20-0}}={}^{20}{{C}_{20}} \\
&\Rightarrow {}^{20}{{C}_{1}}={}^{20}{{C}_{20-1}}={}^{20}{{C}_{19}} \\
&\Rightarrow {}^{20}{{C}_{2}}={}^{20}{{C}_{20-2}}={}^{20}{{C}_{18}} \\
&\Rightarrow {}^{20}{{C}_{3}}={}^{20}{{C}_{20-3}}={}^{20}{{C}_{17}} \\
\end{align}$
And so on...
We should also recall that $\sum\limits_{0\le k\le n}{{}^{n}{{C}_{k}}}={{2}^{n}}$
\[\Rightarrow {}^{n}{{C}_{1}}+{}^{n}{{C}_{2}}+{}^{n}{{C}_{3}}+{}^{n}{{C}_{4}}+\cdots +{}^{n}{{C}_{n}}={{2}^{n}}\text{ }\cdots \left( i \right)\]
Let us write the sum as $S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}$
Then it can also be written as $S=2{}^{20}{{C}_{20}}+5{}^{20}{{C}_{19}}+8{}^{20}{{C}_{18}}+11{}^{20}{{C}_{17}}+\cdots +62{}^{20}{{C}_{0}}$
This can also be arranged as $S=62{}^{20}{{C}_{20}}+59{}^{20}{{C}_{19}}+\cdots +2{}^{20}{{C}_{0}}$
Two rearrangements of S can be found as
$\begin{align}
& S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}} \\
& S=62{}^{20}{{C}_{20}}+59{}^{20}{{C}_{19}}+\cdots +2{}^{20}{{C}_{0}} \\
\end{align}$
Adding them, we get
$\begin{align}
&\Rightarrow S+S=\left( 2+62 \right){}^{20}{{C}_{20}}+\left( 5+59 \right){}^{20}{{C}_{19}}+\cdots +\left( 2+62 \right){}^{20}{{C}_{0}} \\
&\Rightarrow 2S=64{}^{20}{{C}_{20}}+64{}^{20}{{C}_{19}}+\cdots +64{}^{20}{{C}_{0}} \\
& =64\left( {}^{20}{{C}_{20}}+{}^{20}{{C}_{19}}+\cdots +{}^{20}{{C}_{0}} \right)
\end{align}$
Putting the value of equation (i) in above equation, we get
$\begin{align}
&\Rightarrow 2S=64\left( {}^{20}{{C}_{20}}+{}^{20}{{C}_{19}}+\cdots+{}^{20}{{C}_{0}} \right) \\
&\Rightarrow 2S=64\times {{2}^{20}} \\
&\Rightarrow S=32\times {{2}^{20}} \\
& ={{2}^{5}}\times {{2}^{20}}={{2}^{25}}
\end{align}$
Hence, option (c) is correct.
Note: Let us recall the definition of factorial notation and combinations.
The factorial notation is denoted by $n!$ or $\left| \!{\underline {\,
n \,}} \right. $ and is defined as the product of first n natural numbers, that is, $n!=1\times 2\times 3\times \cdots \times n$
The number of combinations of n different objects taken r at a time, is denoted by ${}^{n}{{C}_{r}}$ and is defined by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
Another way to solve this question is,
Given $S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}$
Clearly, 2,5,8,... follows the pattern of 3r+2 where r=0, 1, 2, ...
Thus, the given series can be written as
$S=2{}^{20}{{C}_{0}}+5{}^{20}{{C}_{1}}+8{}^{20}{{C}_{2}}+11{}^{20}{{C}_{3}}+\cdots +62{}^{20}{{C}_{20}}$
Putting $3r+2$ in the above expression, we get
$S=\sum\limits_{r=0}^{20}{\left( 3r+2 \right)}{}^{20}{{C}_{r}}$
Solving it further, we get
$\begin{align}
& S=\sum\limits_{r=0}^{20}{3r\left( {}^{20}{{C}_{r}} \right)}+\sum\limits_{r=0}^{20}{2\left( {}^{20}{{C}_{r}} \right)} \\
& =3\sum\limits_{r=0}^{20}{r\left( {}^{20}{{C}_{r}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)}
\end{align}$
We know, ${}^{n}{{C}_{r}}=\dfrac{n}{r}{}^{n-1}{{C}_{r-1}}$
Putting this value in above expression, we get
$S=3\sum\limits_{r=0}^{20}{r\left( \dfrac{20}{r} \right)\left( {}^{19}{{C}_{r-1}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)}$
Solving it further, we get
$\begin{align}
& S=3\times 20\sum\limits_{r=0}^{20}{\left( {}^{19}{{C}_{r-1}} \right)}+2\sum\limits_{r=0}^{20}{\left( {}^{20}{{C}_{r}} \right)} \\
& =60\times {{2}^{19}}+2\times {{2}^{20}} \\
& =\left( 60+4 \right)\times {{2}^{19}}=64\times {{2}^{19}}={{2}^{6}}\times {{2}^{19}}={{2}^{25}}
\end{align}$
Hence, the sum of the series is ${{2}^{25}}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

