
The sum of squares of two consecutive odd numbers is 202. Find the numbers.
Answer
578.7k+ views
Hint:-Let us assume that one of the two numbers is ‘x’. As one of the two numbers is ‘x’, then the second number will be ‘x + 2’.
Complete step-by-step answer:
We shall add the squares of these two numbers and equate it to 202 as the sum of the squares of the two consecutive odd numbers is 202.
We must know the below given factorization identity as we will be using this identity in out solution. We use this identity for solving the square of ‘x + 2’. We will consider ‘x’ as ‘a’ and ‘2’ as ‘b’ in this.
\[{{\left( a\ \ +\ \ b \right)}^{2}}\ \ =\ \ {{a}^{2}}\ \ +\ \ 2ab\ \ +\ \ {{b}^{2}}\]
Let us now solve this question.
We shall firstly form an equation.
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{x}^{2}}\ \ +\ \ \left( {{x}^{2}}\ \ +\ \ 2\ \times \ x\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow {{x}^{2}}\ \ +\ \ {{x}^{2}}\ \ +\ \ 4x\ \ +\ \ 4\ \ =\ \ 202 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ +\ \ 4\ \ =\ \ 202 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ =\ \ 202\ \ -\ \ 4 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ =\ \ 198 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ -\ \ 198\ \ =\ \ 0 \\
& \Rightarrow 2\left( {{x}^{2}}\ \ +\ \ 2x\ \ -\ \ 99 \right)\ \ =\ \ 0 \\
& \Rightarrow 2\left( {{x}^{2}}\ \ +\ \ 11x\ \ -\ \ 9x\ \ -\ \ 99 \right)\ \ =\ \ 0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow 2\ \left[ \ x\ \left( x\ +\ 11 \right)\ -\ 9\ \left( x\ +\ 11 \right)\ \right]\ \ =\ \ 0 \\
& \Rightarrow \left( x\ \ +\ \ 11 \right)\ \left( x\ \ -\ \ 9 \right)\ \ =\ \ 0 \\
& x\ \ =\ \ -11\ \ or\ \ 9 \\
\end{align}\]
Let us now verify our answer.
For verification, we will put the value of ‘x’ in the equation \[{{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202\] to check whether the answer that we have obtained after these calculations is correct or not.
Firstly, we shall take ‘x’ as -11.
Case I: \[x\ \ =\ \ -11\]
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{\left( -11 \right)}^{2}}\ \ +\ \ {{\left( -11\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ \left( -{{11}^{2}}\ \ +\ \ 2\ \times \ -11\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ \left( 121\ \ -44\ \ +\ \ 4 \right)\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ 81\ \ =\ \ 202 \\
& \Rightarrow 202\ \ =\ \ 202 \\
\end{align}\]
L.H.S = R.H.S
Hence, verified
This means that -11 is one of the correct values of ‘x’.
Now, we shall take ‘x’ as 9.
Case II: \[x\ \ =\ \ 9\]
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{\left( 9 \right)}^{2}}\ \ +\ \ {{\left( 9\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ \left( {{9}^{2}}\ \ +\ \ 2\ \times \ 9\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ \left( 81\ \ +\ \ 36\ \ +\ \ 4 \right)\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ 121\ \ =\ \ 202 \\
& \Rightarrow 202\ \ =\ \ 202 \\
\end{align}\]
L.H.S. = R.H.S.
Hence, verified
Note:-Let us now learn about the other factorization identities.
Here are some of them:-
1.\[{{\left( a\text{ }+\text{ }b \right)}^{2}}\ \ =\ \ {{a}^{2}}~\ +\ \text{ }2ab\text{ }\ +~{{b}^{2}}~\]
2.\[{{\left( a\text{ }-\text{ }b \right)}^{2}}\ \ =\ \ {{a}^{2}}~\ -\ \text{ }\ 2ab\text{ }+\ ~{{b}^{2}}\]
3.\[\left( a\text{ }+\ \text{ }b \right)\text{ }\left( a\text{ }\text{ }\ b \right)\ \ =\ \ {{a}^{2}}\ - \ \ ~\ \ {{b}^{2}}~\ \]
4.\[\left( x\text{ }+\text{ }a \right)\text{ }\left( x\text{ }+\text{ }b \right)\ \ =\ \ {{x}^{2}}~\ +\text{ }\ \left( a\text{ }+\text{ }b \right)\text{ }x\text{ }+\text{ }\ ab\text{ }\]
So these are some of the factorization identities that are also used for the solution of such questions in which factorization is required.
Complete step-by-step answer:
We shall add the squares of these two numbers and equate it to 202 as the sum of the squares of the two consecutive odd numbers is 202.
We must know the below given factorization identity as we will be using this identity in out solution. We use this identity for solving the square of ‘x + 2’. We will consider ‘x’ as ‘a’ and ‘2’ as ‘b’ in this.
\[{{\left( a\ \ +\ \ b \right)}^{2}}\ \ =\ \ {{a}^{2}}\ \ +\ \ 2ab\ \ +\ \ {{b}^{2}}\]
Let us now solve this question.
We shall firstly form an equation.
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{x}^{2}}\ \ +\ \ \left( {{x}^{2}}\ \ +\ \ 2\ \times \ x\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow {{x}^{2}}\ \ +\ \ {{x}^{2}}\ \ +\ \ 4x\ \ +\ \ 4\ \ =\ \ 202 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ +\ \ 4\ \ =\ \ 202 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ =\ \ 202\ \ -\ \ 4 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ =\ \ 198 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ -\ \ 198\ \ =\ \ 0 \\
& \Rightarrow 2\left( {{x}^{2}}\ \ +\ \ 2x\ \ -\ \ 99 \right)\ \ =\ \ 0 \\
& \Rightarrow 2\left( {{x}^{2}}\ \ +\ \ 11x\ \ -\ \ 9x\ \ -\ \ 99 \right)\ \ =\ \ 0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow 2\ \left[ \ x\ \left( x\ +\ 11 \right)\ -\ 9\ \left( x\ +\ 11 \right)\ \right]\ \ =\ \ 0 \\
& \Rightarrow \left( x\ \ +\ \ 11 \right)\ \left( x\ \ -\ \ 9 \right)\ \ =\ \ 0 \\
& x\ \ =\ \ -11\ \ or\ \ 9 \\
\end{align}\]
Let us now verify our answer.
For verification, we will put the value of ‘x’ in the equation \[{{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202\] to check whether the answer that we have obtained after these calculations is correct or not.
Firstly, we shall take ‘x’ as -11.
Case I: \[x\ \ =\ \ -11\]
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{\left( -11 \right)}^{2}}\ \ +\ \ {{\left( -11\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ \left( -{{11}^{2}}\ \ +\ \ 2\ \times \ -11\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ \left( 121\ \ -44\ \ +\ \ 4 \right)\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ 81\ \ =\ \ 202 \\
& \Rightarrow 202\ \ =\ \ 202 \\
\end{align}\]
L.H.S = R.H.S
Hence, verified
This means that -11 is one of the correct values of ‘x’.
Now, we shall take ‘x’ as 9.
Case II: \[x\ \ =\ \ 9\]
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{\left( 9 \right)}^{2}}\ \ +\ \ {{\left( 9\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ \left( {{9}^{2}}\ \ +\ \ 2\ \times \ 9\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ \left( 81\ \ +\ \ 36\ \ +\ \ 4 \right)\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ 121\ \ =\ \ 202 \\
& \Rightarrow 202\ \ =\ \ 202 \\
\end{align}\]
L.H.S. = R.H.S.
Hence, verified
Note:-Let us now learn about the other factorization identities.
Here are some of them:-
1.\[{{\left( a\text{ }+\text{ }b \right)}^{2}}\ \ =\ \ {{a}^{2}}~\ +\ \text{ }2ab\text{ }\ +~{{b}^{2}}~\]
2.\[{{\left( a\text{ }-\text{ }b \right)}^{2}}\ \ =\ \ {{a}^{2}}~\ -\ \text{ }\ 2ab\text{ }+\ ~{{b}^{2}}\]
3.\[\left( a\text{ }+\ \text{ }b \right)\text{ }\left( a\text{ }\text{ }\ b \right)\ \ =\ \ {{a}^{2}}\ - \ \ ~\ \ {{b}^{2}}~\ \]
4.\[\left( x\text{ }+\text{ }a \right)\text{ }\left( x\text{ }+\text{ }b \right)\ \ =\ \ {{x}^{2}}~\ +\text{ }\ \left( a\text{ }+\text{ }b \right)\text{ }x\text{ }+\text{ }\ ab\text{ }\]
So these are some of the factorization identities that are also used for the solution of such questions in which factorization is required.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

Advantages and disadvantages of science

Write a letter to your class teacher asking for 2 days class 8 english CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

The past tense of Cut is Cutted A Yes B No class 8 english CBSE

