
The sum of squares of two consecutive odd numbers is 202. Find the numbers.
Answer
606.3k+ views
Hint:-Let us assume that one of the two numbers is ‘x’. As one of the two numbers is ‘x’, then the second number will be ‘x + 2’.
Complete step-by-step answer:
We shall add the squares of these two numbers and equate it to 202 as the sum of the squares of the two consecutive odd numbers is 202.
We must know the below given factorization identity as we will be using this identity in out solution. We use this identity for solving the square of ‘x + 2’. We will consider ‘x’ as ‘a’ and ‘2’ as ‘b’ in this.
\[{{\left( a\ \ +\ \ b \right)}^{2}}\ \ =\ \ {{a}^{2}}\ \ +\ \ 2ab\ \ +\ \ {{b}^{2}}\]
Let us now solve this question.
We shall firstly form an equation.
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{x}^{2}}\ \ +\ \ \left( {{x}^{2}}\ \ +\ \ 2\ \times \ x\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow {{x}^{2}}\ \ +\ \ {{x}^{2}}\ \ +\ \ 4x\ \ +\ \ 4\ \ =\ \ 202 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ +\ \ 4\ \ =\ \ 202 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ =\ \ 202\ \ -\ \ 4 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ =\ \ 198 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ -\ \ 198\ \ =\ \ 0 \\
& \Rightarrow 2\left( {{x}^{2}}\ \ +\ \ 2x\ \ -\ \ 99 \right)\ \ =\ \ 0 \\
& \Rightarrow 2\left( {{x}^{2}}\ \ +\ \ 11x\ \ -\ \ 9x\ \ -\ \ 99 \right)\ \ =\ \ 0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow 2\ \left[ \ x\ \left( x\ +\ 11 \right)\ -\ 9\ \left( x\ +\ 11 \right)\ \right]\ \ =\ \ 0 \\
& \Rightarrow \left( x\ \ +\ \ 11 \right)\ \left( x\ \ -\ \ 9 \right)\ \ =\ \ 0 \\
& x\ \ =\ \ -11\ \ or\ \ 9 \\
\end{align}\]
Let us now verify our answer.
For verification, we will put the value of ‘x’ in the equation \[{{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202\] to check whether the answer that we have obtained after these calculations is correct or not.
Firstly, we shall take ‘x’ as -11.
Case I: \[x\ \ =\ \ -11\]
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{\left( -11 \right)}^{2}}\ \ +\ \ {{\left( -11\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ \left( -{{11}^{2}}\ \ +\ \ 2\ \times \ -11\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ \left( 121\ \ -44\ \ +\ \ 4 \right)\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ 81\ \ =\ \ 202 \\
& \Rightarrow 202\ \ =\ \ 202 \\
\end{align}\]
L.H.S = R.H.S
Hence, verified
This means that -11 is one of the correct values of ‘x’.
Now, we shall take ‘x’ as 9.
Case II: \[x\ \ =\ \ 9\]
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{\left( 9 \right)}^{2}}\ \ +\ \ {{\left( 9\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ \left( {{9}^{2}}\ \ +\ \ 2\ \times \ 9\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ \left( 81\ \ +\ \ 36\ \ +\ \ 4 \right)\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ 121\ \ =\ \ 202 \\
& \Rightarrow 202\ \ =\ \ 202 \\
\end{align}\]
L.H.S. = R.H.S.
Hence, verified
Note:-Let us now learn about the other factorization identities.
Here are some of them:-
1.\[{{\left( a\text{ }+\text{ }b \right)}^{2}}\ \ =\ \ {{a}^{2}}~\ +\ \text{ }2ab\text{ }\ +~{{b}^{2}}~\]
2.\[{{\left( a\text{ }-\text{ }b \right)}^{2}}\ \ =\ \ {{a}^{2}}~\ -\ \text{ }\ 2ab\text{ }+\ ~{{b}^{2}}\]
3.\[\left( a\text{ }+\ \text{ }b \right)\text{ }\left( a\text{ }\text{ }\ b \right)\ \ =\ \ {{a}^{2}}\ - \ \ ~\ \ {{b}^{2}}~\ \]
4.\[\left( x\text{ }+\text{ }a \right)\text{ }\left( x\text{ }+\text{ }b \right)\ \ =\ \ {{x}^{2}}~\ +\text{ }\ \left( a\text{ }+\text{ }b \right)\text{ }x\text{ }+\text{ }\ ab\text{ }\]
So these are some of the factorization identities that are also used for the solution of such questions in which factorization is required.
Complete step-by-step answer:
We shall add the squares of these two numbers and equate it to 202 as the sum of the squares of the two consecutive odd numbers is 202.
We must know the below given factorization identity as we will be using this identity in out solution. We use this identity for solving the square of ‘x + 2’. We will consider ‘x’ as ‘a’ and ‘2’ as ‘b’ in this.
\[{{\left( a\ \ +\ \ b \right)}^{2}}\ \ =\ \ {{a}^{2}}\ \ +\ \ 2ab\ \ +\ \ {{b}^{2}}\]
Let us now solve this question.
We shall firstly form an equation.
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{x}^{2}}\ \ +\ \ \left( {{x}^{2}}\ \ +\ \ 2\ \times \ x\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow {{x}^{2}}\ \ +\ \ {{x}^{2}}\ \ +\ \ 4x\ \ +\ \ 4\ \ =\ \ 202 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ +\ \ 4\ \ =\ \ 202 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ =\ \ 202\ \ -\ \ 4 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ =\ \ 198 \\
& \Rightarrow 2{{x}^{2}}\ \ +\ \ 4x\ \ -\ \ 198\ \ =\ \ 0 \\
& \Rightarrow 2\left( {{x}^{2}}\ \ +\ \ 2x\ \ -\ \ 99 \right)\ \ =\ \ 0 \\
& \Rightarrow 2\left( {{x}^{2}}\ \ +\ \ 11x\ \ -\ \ 9x\ \ -\ \ 99 \right)\ \ =\ \ 0 \\
\end{align}\]
\[\begin{align}
& \Rightarrow 2\ \left[ \ x\ \left( x\ +\ 11 \right)\ -\ 9\ \left( x\ +\ 11 \right)\ \right]\ \ =\ \ 0 \\
& \Rightarrow \left( x\ \ +\ \ 11 \right)\ \left( x\ \ -\ \ 9 \right)\ \ =\ \ 0 \\
& x\ \ =\ \ -11\ \ or\ \ 9 \\
\end{align}\]
Let us now verify our answer.
For verification, we will put the value of ‘x’ in the equation \[{{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202\] to check whether the answer that we have obtained after these calculations is correct or not.
Firstly, we shall take ‘x’ as -11.
Case I: \[x\ \ =\ \ -11\]
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{\left( -11 \right)}^{2}}\ \ +\ \ {{\left( -11\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ \left( -{{11}^{2}}\ \ +\ \ 2\ \times \ -11\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ \left( 121\ \ -44\ \ +\ \ 4 \right)\ \ =\ \ 202 \\
& \Rightarrow 121\ \ +\ \ 81\ \ =\ \ 202 \\
& \Rightarrow 202\ \ =\ \ 202 \\
\end{align}\]
L.H.S = R.H.S
Hence, verified
This means that -11 is one of the correct values of ‘x’.
Now, we shall take ‘x’ as 9.
Case II: \[x\ \ =\ \ 9\]
\[\begin{align}
& \Rightarrow {{\left( x \right)}^{2}}\ \ +\ \ {{\left( x\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow {{\left( 9 \right)}^{2}}\ \ +\ \ {{\left( 9\ \ +\ \ 2 \right)}^{2}}\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ \left( {{9}^{2}}\ \ +\ \ 2\ \times \ 9\ \times \ 2\ \ +\ \ {{2}^{2}} \right)\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ \left( 81\ \ +\ \ 36\ \ +\ \ 4 \right)\ \ =\ \ 202 \\
& \Rightarrow 81\ \ +\ \ 121\ \ =\ \ 202 \\
& \Rightarrow 202\ \ =\ \ 202 \\
\end{align}\]
L.H.S. = R.H.S.
Hence, verified
Note:-Let us now learn about the other factorization identities.
Here are some of them:-
1.\[{{\left( a\text{ }+\text{ }b \right)}^{2}}\ \ =\ \ {{a}^{2}}~\ +\ \text{ }2ab\text{ }\ +~{{b}^{2}}~\]
2.\[{{\left( a\text{ }-\text{ }b \right)}^{2}}\ \ =\ \ {{a}^{2}}~\ -\ \text{ }\ 2ab\text{ }+\ ~{{b}^{2}}\]
3.\[\left( a\text{ }+\ \text{ }b \right)\text{ }\left( a\text{ }\text{ }\ b \right)\ \ =\ \ {{a}^{2}}\ - \ \ ~\ \ {{b}^{2}}~\ \]
4.\[\left( x\text{ }+\text{ }a \right)\text{ }\left( x\text{ }+\text{ }b \right)\ \ =\ \ {{x}^{2}}~\ +\text{ }\ \left( a\text{ }+\text{ }b \right)\text{ }x\text{ }+\text{ }\ ab\text{ }\]
So these are some of the factorization identities that are also used for the solution of such questions in which factorization is required.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Full form of STD, ISD and PCO

What are the 12 elements of nature class 8 chemistry CBSE

What is the difference between rai and mustard see class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

Write a short biography of Dr APJ Abdul Kalam under class 8 english CBSE

Compare the manure and fertilizer in maintaining the class 8 biology CBSE

