
The sum of rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ is.
(a) 31
(b) 41
(c) 51
(d) None of these
Answer
594.3k+ views
Hint: For solving this question first, we will expand the given term using the binomial expansion formulae and then find the rational terms. Then we will add them to get the correct answer.
Complete step-by-step answer:
Given:
We have to find the sum of rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$.
In the expansion of the ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ , terms which are rational will not have fractional power, on the other hand, irrational terms will have fractional powers.
Now, we will use the following binomial expansion result:
\[{{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot y+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{y}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{y}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{y}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{y}^{5}}+....................+{}^{n}{{C}_{n}}{{y}^{n}}\]
Where, ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
We can apply the above result to expand ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ . Then,
\[\begin{align}
& {{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}={}^{10}{{C}_{0}}{{\left( \sqrt{2} \right)}^{10}}+{}^{10}{{C}_{1}}{{\left( \sqrt{2} \right)}^{9}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{1}}+{}^{10}{{C}_{2}}{{\left( \sqrt{2} \right)}^{8}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{2}}+{}^{10}{{C}_{3}}{{\left( \sqrt{2} \right)}^{7}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{3}}+{}^{10}{{C}_{4}}{{\left( \sqrt{2} \right)}^{6}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{4}} \\
& +{}^{10}{{C}_{5}}{{\left( \sqrt{2} \right)}^{5}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{5}}\text{ }+{}^{10}{{C}_{6}}{{\left( \sqrt{2} \right)}^{4}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{6}}+{}^{10}{{C}_{7}}{{\left( \sqrt{2} \right)}^{3}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{7}}+{}^{10}{{C}_{8}}{{\left( \sqrt{2} \right)}^{2}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{8}}+{}^{10}{{C}_{9}}{{\left( \sqrt{2} \right)}^{1}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{9}}+{}^{10}{{C}_{10}}{{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{10}} \\
& \Rightarrow {{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}={}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{10}{{C}_{1}}{{\left( 2 \right)}^{{}^{9}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{1}/{}_{5}}}+{}^{10}{{C}_{2}}{{\left( 2 \right)}^{4}}\cdot {{\left( 3 \right)}^{{}^{2}/{}_{5}}}+{}^{10}{{C}_{3}}{{\left( 2 \right)}^{{}^{7}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{3}/{}_{5}}}+{}^{10}{{C}_{4}}{{\left( 2 \right)}^{3}}\cdot {{\left( 3 \right)}^{{}^{4}/{}_{5}}}+{}^{10}{{C}_{5}}{{\left( 2 \right)}^{{}^{5}/{}_{2}}}\cdot {{\left( 3 \right)}^{1}} \\
& \text{ }+{}^{10}{{C}_{6}}{{\left( 2 \right)}^{2}}\cdot {{\left( 3 \right)}^{{}^{6}/{}_{5}}}+{}^{10}{{C}_{7}}{{\left( 2 \right)}^{{}^{3}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{7}/{}_{5}}}+{}^{10}{{C}_{8}}{{\left( 2 \right)}^{1}}\cdot {{\left( 3 \right)}^{{}^{8}/{}_{5}}}+{}^{10}{{C}_{9}}{{\left( 2 \right)}^{{}^{1}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{9}/{}_{5}}}+{}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}} \\
\end{align}\]
Thus, in the above expression, we can see that there are only two rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ . These rational terms are the first term and the last term of the expansion. Rational terms are \[{}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}=32\] and \[{}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}}=9\] .
Now, adding the rational terms of the expansion. Then,
\[\begin{align}
& {}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}} \\
& \Rightarrow 32+9 \\
& \Rightarrow 41 \\
\end{align}\]
Thus, the sum of rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ is 41.
Hence, option (b) is the correct option.
Note: Here, the student should write the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ correctly as per the binomial expansion formula without missing any term. Then, check each term clearly whether it is rational or irrational then solve for the correct answer without any calculation mistake.
Complete step-by-step answer:
Given:
We have to find the sum of rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$.
In the expansion of the ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ , terms which are rational will not have fractional power, on the other hand, irrational terms will have fractional powers.
Now, we will use the following binomial expansion result:
\[{{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot y+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{y}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{y}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{y}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{y}^{5}}+....................+{}^{n}{{C}_{n}}{{y}^{n}}\]
Where, ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
We can apply the above result to expand ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ . Then,
\[\begin{align}
& {{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}={}^{10}{{C}_{0}}{{\left( \sqrt{2} \right)}^{10}}+{}^{10}{{C}_{1}}{{\left( \sqrt{2} \right)}^{9}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{1}}+{}^{10}{{C}_{2}}{{\left( \sqrt{2} \right)}^{8}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{2}}+{}^{10}{{C}_{3}}{{\left( \sqrt{2} \right)}^{7}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{3}}+{}^{10}{{C}_{4}}{{\left( \sqrt{2} \right)}^{6}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{4}} \\
& +{}^{10}{{C}_{5}}{{\left( \sqrt{2} \right)}^{5}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{5}}\text{ }+{}^{10}{{C}_{6}}{{\left( \sqrt{2} \right)}^{4}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{6}}+{}^{10}{{C}_{7}}{{\left( \sqrt{2} \right)}^{3}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{7}}+{}^{10}{{C}_{8}}{{\left( \sqrt{2} \right)}^{2}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{8}}+{}^{10}{{C}_{9}}{{\left( \sqrt{2} \right)}^{1}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{9}}+{}^{10}{{C}_{10}}{{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{10}} \\
& \Rightarrow {{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}={}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{10}{{C}_{1}}{{\left( 2 \right)}^{{}^{9}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{1}/{}_{5}}}+{}^{10}{{C}_{2}}{{\left( 2 \right)}^{4}}\cdot {{\left( 3 \right)}^{{}^{2}/{}_{5}}}+{}^{10}{{C}_{3}}{{\left( 2 \right)}^{{}^{7}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{3}/{}_{5}}}+{}^{10}{{C}_{4}}{{\left( 2 \right)}^{3}}\cdot {{\left( 3 \right)}^{{}^{4}/{}_{5}}}+{}^{10}{{C}_{5}}{{\left( 2 \right)}^{{}^{5}/{}_{2}}}\cdot {{\left( 3 \right)}^{1}} \\
& \text{ }+{}^{10}{{C}_{6}}{{\left( 2 \right)}^{2}}\cdot {{\left( 3 \right)}^{{}^{6}/{}_{5}}}+{}^{10}{{C}_{7}}{{\left( 2 \right)}^{{}^{3}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{7}/{}_{5}}}+{}^{10}{{C}_{8}}{{\left( 2 \right)}^{1}}\cdot {{\left( 3 \right)}^{{}^{8}/{}_{5}}}+{}^{10}{{C}_{9}}{{\left( 2 \right)}^{{}^{1}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{9}/{}_{5}}}+{}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}} \\
\end{align}\]
Thus, in the above expression, we can see that there are only two rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ . These rational terms are the first term and the last term of the expansion. Rational terms are \[{}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}=32\] and \[{}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}}=9\] .
Now, adding the rational terms of the expansion. Then,
\[\begin{align}
& {}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}} \\
& \Rightarrow 32+9 \\
& \Rightarrow 41 \\
\end{align}\]
Thus, the sum of rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ is 41.
Hence, option (b) is the correct option.
Note: Here, the student should write the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ correctly as per the binomial expansion formula without missing any term. Then, check each term clearly whether it is rational or irrational then solve for the correct answer without any calculation mistake.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

