   Question Answers

# The sum of rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ is.(a) 31(b) 41(c) 51(d) None of these  Hint: For solving this question first, we will expand the given term using the binomial expansion formulae and then find the rational terms. Then we will add them to get the correct answer.

Given:
We have to find the sum of rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$.
In the expansion of the ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ , terms which are rational will not have fractional power, on the other hand, irrational terms will have fractional powers.
Now, we will use the following binomial expansion result:
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot y+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{y}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{y}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{y}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{y}^{5}}+....................+{}^{n}{{C}_{n}}{{y}^{n}}$
Where, ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
We can apply the above result to expand ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ . Then,
\begin{align} & {{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}={}^{10}{{C}_{0}}{{\left( \sqrt{2} \right)}^{10}}+{}^{10}{{C}_{1}}{{\left( \sqrt{2} \right)}^{9}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{1}}+{}^{10}{{C}_{2}}{{\left( \sqrt{2} \right)}^{8}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{2}}+{}^{10}{{C}_{3}}{{\left( \sqrt{2} \right)}^{7}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{3}}+{}^{10}{{C}_{4}}{{\left( \sqrt{2} \right)}^{6}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{4}} \\ & +{}^{10}{{C}_{5}}{{\left( \sqrt{2} \right)}^{5}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{5}}\text{ }+{}^{10}{{C}_{6}}{{\left( \sqrt{2} \right)}^{4}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{6}}+{}^{10}{{C}_{7}}{{\left( \sqrt{2} \right)}^{3}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{7}}+{}^{10}{{C}_{8}}{{\left( \sqrt{2} \right)}^{2}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{8}}+{}^{10}{{C}_{9}}{{\left( \sqrt{2} \right)}^{1}}\cdot {{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{9}}+{}^{10}{{C}_{10}}{{\left( {{3}^{{}^{1}/{}_{5}}} \right)}^{10}} \\ & \Rightarrow {{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}={}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{10}{{C}_{1}}{{\left( 2 \right)}^{{}^{9}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{1}/{}_{5}}}+{}^{10}{{C}_{2}}{{\left( 2 \right)}^{4}}\cdot {{\left( 3 \right)}^{{}^{2}/{}_{5}}}+{}^{10}{{C}_{3}}{{\left( 2 \right)}^{{}^{7}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{3}/{}_{5}}}+{}^{10}{{C}_{4}}{{\left( 2 \right)}^{3}}\cdot {{\left( 3 \right)}^{{}^{4}/{}_{5}}}+{}^{10}{{C}_{5}}{{\left( 2 \right)}^{{}^{5}/{}_{2}}}\cdot {{\left( 3 \right)}^{1}} \\ & \text{ }+{}^{10}{{C}_{6}}{{\left( 2 \right)}^{2}}\cdot {{\left( 3 \right)}^{{}^{6}/{}_{5}}}+{}^{10}{{C}_{7}}{{\left( 2 \right)}^{{}^{3}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{7}/{}_{5}}}+{}^{10}{{C}_{8}}{{\left( 2 \right)}^{1}}\cdot {{\left( 3 \right)}^{{}^{8}/{}_{5}}}+{}^{10}{{C}_{9}}{{\left( 2 \right)}^{{}^{1}/{}_{2}}}\cdot {{\left( 3 \right)}^{{}^{9}/{}_{5}}}+{}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}} \\ \end{align}

Thus, in the above expression, we can see that there are only two rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ . These rational terms are the first term and the last term of the expansion. Rational terms are ${}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}=32$ and ${}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}}=9$ .
Now, adding the rational terms of the expansion. Then,
\begin{align} & {}^{10}{{C}_{0}}{{\left( 2 \right)}^{5}}+{}^{10}{{C}_{10}}{{\left( 3 \right)}^{2}} \\ & \Rightarrow 32+9 \\ & \Rightarrow 41 \\ \end{align}
Thus, the sum of rational terms in the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ is 41.
Hence, option (b) is the correct option.

Note: Here, the student should write the expansion of ${{\left( \sqrt{2}+{{3}^{{}^{1}/{}_{5}}} \right)}^{10}}$ correctly as per the binomial expansion formula without missing any term. Then, check each term clearly whether it is rational or irrational then solve for the correct answer without any calculation mistake.
View Notes
Binomial Expansion Formula  Significance of Genetics in the Process of Evolution  Terms Used in Electronic Communication Systems  The Idea of Time  Measuring the Rate of Change of Motion  The Perimeter of Rectangle Formula  Dark Side of the Moon  The Converse of Pythagoras Theorem  Biomes of the World  The Ghat of the Only World Summary  Important Questions for CBSE Class 11 English Snapshots Chapter 1 - The Summer of the Beautiful White Horse  CBSE Class 8 Science Reaching The Age of Adolescence Worksheets  Important Questions for CBSE Class 11 Biology Chapter 8 - Cell The Unit of Life  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 3 - Motions of the Earth  Important Questions for CBSE Class 11 Accountancy Chapter 12 - Applications Of Computer In Accounting  Important Questions for CBSE Class 11 Indian Economic Development Chapter 1 - Indian Economy on the Eve of Independence  Important Questions for CBSE Class 9 Science Chapter 4 - Structure of The Atom  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 5 - Major Domains Of The Earth  Important Questions for CBSE Class 6 Social Science The Earth Our Habitat Chapter 1 - The Earth In The Solar System  Important Questions for CBSE Class 7 English Honeycomb Chapter 10 - The Story of Cricket  Previous Year Question Paper of CBSE Class 10 English  CBSE Class 12 Maths Question Paper 2020  CBSE Class 10 Maths Question Paper 2020  Maths Question Paper for CBSE Class 10 - 2011  Maths Question Paper for CBSE Class 10 - 2008  CBSE Class 10 Maths Question Paper 2017  Maths Question Paper for CBSE Class 10 - 2012  Maths Question Paper for CBSE Class 10 - 2009  Maths Question Paper for CBSE Class 10 - 2010  Maths Question Paper for CBSE Class 10 - 2007  NCERT Solutions for Class 11 Biology Chapter 8 Cell: The Unit of Life in Hindi  NCERT Solutions Class 11 English Woven Words Prose Chapter 4 The Adventure of the Three Garridebs  NCERT Solutions for Class 11 English Snapshots Chapter 6 - The Ghat of the Only World  NCERT Solutions for Class 9 Science Chapter 4 Structure of The Atom in Hindi  NCERT Solutions for Class 9 English Moments Chapter 4 - In The Kingdom of Fools  NCERT Solutions for Class 11 English Hornbill Chapter 4 - Landscape of the Soul  NCERT Solutions for Class 10 Social Science India and the Contemporary World - II Chapter 1 - The Rise of Nationalism in Europe  RS Aggarwal Class 11 Solutions Chapter-16 Conditional Identities Involving the Angles of a Triangle  NCERT Solutions for Class 9 Science Chapter 5 The Fundamental Unit of Life in Hindi  NCERT Solutions for Class 8 Science Chapter 10 Reaching The Age of Adolescence in Hindi  