
The sum of all values of $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ satisfying ${{\sin }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$ is?
A. $\dfrac{\pi }{2}$
B. $\pi $
C. $\dfrac{3\pi }{8}$
D. $\dfrac{5\pi }{4}$
Answer
604.5k+ views
Hint: In the above question we will substitute the value of ${{\sin }^{2}}2\theta $ in form of ${{\cos }^{2}}2\theta $ by using the trigonometric identity as follows:
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
After that we will use the general solution for \[{{\cos }^{2}}\theta ={{\cos }^{2}}\alpha \] given by,
$\theta =n\pi \pm \alpha $
Complete step-by-step answer:
We have been asked to find the sum of all values of $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ satisfying ${{\sin }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$.
We know that ${{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta =1$, which is a trigonometric identity.
${{\sin }^{2}}2\theta =1-{{\cos }^{2}}2\theta $
Substituting the values of ${{\sin }^{2}}2\theta $ in the given equation, we get,
$1-{{\cos }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$
On rearranging the terms, we get,
$\begin{align}
& {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +1-\dfrac{3}{4}=0 \\
& {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +\dfrac{1}{4}=0 \\
\end{align}$
The above equation is in the form of ${{x}^{2}}-2ax+{{a}^{2}}$ which is equal to ${{\left( x-a \right)}^{2}}$.
Here, $x={{\cos }^{2}}2\theta \ and\ a=\dfrac{1}{2}$.
$\begin{align}
& \Rightarrow {{\left( {{\cos }^{2}}2\theta -\dfrac{1}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\cos }^{2}}2\theta =\dfrac{1}{2}={{\cos }^{2}}\left( \dfrac{\pi }{4} \right) \\
\end{align}$
Since, $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$.
We know the general solution for ${{\cos }^{2}}\theta ={{\cos }^{2}}\alpha $ is given by,
$\begin{align}
& \theta =n\pi \pm \alpha \\
& \Rightarrow 2\theta =n\pi \pm \dfrac{\pi }{4} \\
\end{align}$
For $n=0$,
$\begin{align}
& 2\theta =0\pm \dfrac{\pi }{4} \\
& \theta =\pm \dfrac{\pi }{8} \\
\end{align}$
Since, $\theta \in \left( 0,\dfrac{\pi }{2} \right)\Rightarrow \theta =\dfrac{\pi }{8}$
For $n=1$,
$\begin{align}
& 2\theta =\pi \pm \dfrac{\pi }{4} \\
& 2\theta =\pi +\dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{5\pi }{8} \\
& 2\theta =\pi -\dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{3\pi }{8} \\
\end{align}$
Since, $\dfrac{5\pi }{8}>\dfrac{\pi }{2}$. So, we cannot take this value according to the given condition in the question.
$\Rightarrow \theta =\dfrac{3\pi }{8}$ satisfies the question.
Hence, the solutions for the given equation are $\dfrac{\pi }{8}\ and\ \dfrac{3\pi }{8}$.
So, their sum $=\dfrac{\pi }{8}+\dfrac{3\pi }{8}$
$\begin{align}
& =\dfrac{\pi +3\pi }{8} \\
& =\dfrac{4\pi }{8} \\
& =\dfrac{\pi }{2} \\
\end{align}$
Therefore, the correct option is (A).
Note: Be careful while choosing the option as sometimes we just forget that we have to find the sum of the values that satisfy the equation instead of it we choose the value i.e. option (C) $\dfrac{3\pi }{8}$.
Also, remember that while finding the value of $'\theta '$ take care of the given condition on $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ otherwise you will get an extra root.
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
After that we will use the general solution for \[{{\cos }^{2}}\theta ={{\cos }^{2}}\alpha \] given by,
$\theta =n\pi \pm \alpha $
Complete step-by-step answer:
We have been asked to find the sum of all values of $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ satisfying ${{\sin }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$.
We know that ${{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta =1$, which is a trigonometric identity.
${{\sin }^{2}}2\theta =1-{{\cos }^{2}}2\theta $
Substituting the values of ${{\sin }^{2}}2\theta $ in the given equation, we get,
$1-{{\cos }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$
On rearranging the terms, we get,
$\begin{align}
& {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +1-\dfrac{3}{4}=0 \\
& {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +\dfrac{1}{4}=0 \\
\end{align}$
The above equation is in the form of ${{x}^{2}}-2ax+{{a}^{2}}$ which is equal to ${{\left( x-a \right)}^{2}}$.
Here, $x={{\cos }^{2}}2\theta \ and\ a=\dfrac{1}{2}$.
$\begin{align}
& \Rightarrow {{\left( {{\cos }^{2}}2\theta -\dfrac{1}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\cos }^{2}}2\theta =\dfrac{1}{2}={{\cos }^{2}}\left( \dfrac{\pi }{4} \right) \\
\end{align}$
Since, $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$.
We know the general solution for ${{\cos }^{2}}\theta ={{\cos }^{2}}\alpha $ is given by,
$\begin{align}
& \theta =n\pi \pm \alpha \\
& \Rightarrow 2\theta =n\pi \pm \dfrac{\pi }{4} \\
\end{align}$
For $n=0$,
$\begin{align}
& 2\theta =0\pm \dfrac{\pi }{4} \\
& \theta =\pm \dfrac{\pi }{8} \\
\end{align}$
Since, $\theta \in \left( 0,\dfrac{\pi }{2} \right)\Rightarrow \theta =\dfrac{\pi }{8}$
For $n=1$,
$\begin{align}
& 2\theta =\pi \pm \dfrac{\pi }{4} \\
& 2\theta =\pi +\dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{5\pi }{8} \\
& 2\theta =\pi -\dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{3\pi }{8} \\
\end{align}$
Since, $\dfrac{5\pi }{8}>\dfrac{\pi }{2}$. So, we cannot take this value according to the given condition in the question.
$\Rightarrow \theta =\dfrac{3\pi }{8}$ satisfies the question.
Hence, the solutions for the given equation are $\dfrac{\pi }{8}\ and\ \dfrac{3\pi }{8}$.
So, their sum $=\dfrac{\pi }{8}+\dfrac{3\pi }{8}$
$\begin{align}
& =\dfrac{\pi +3\pi }{8} \\
& =\dfrac{4\pi }{8} \\
& =\dfrac{\pi }{2} \\
\end{align}$
Therefore, the correct option is (A).
Note: Be careful while choosing the option as sometimes we just forget that we have to find the sum of the values that satisfy the equation instead of it we choose the value i.e. option (C) $\dfrac{3\pi }{8}$.
Also, remember that while finding the value of $'\theta '$ take care of the given condition on $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ otherwise you will get an extra root.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

