
The sum of all values of $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ satisfying ${{\sin }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$ is?
A. $\dfrac{\pi }{2}$
B. $\pi $
C. $\dfrac{3\pi }{8}$
D. $\dfrac{5\pi }{4}$
Answer
507k+ views
Hint: In the above question we will substitute the value of ${{\sin }^{2}}2\theta $ in form of ${{\cos }^{2}}2\theta $ by using the trigonometric identity as follows:
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
After that we will use the general solution for \[{{\cos }^{2}}\theta ={{\cos }^{2}}\alpha \] given by,
$\theta =n\pi \pm \alpha $
Complete step-by-step answer:
We have been asked to find the sum of all values of $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ satisfying ${{\sin }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$.
We know that ${{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta =1$, which is a trigonometric identity.
${{\sin }^{2}}2\theta =1-{{\cos }^{2}}2\theta $
Substituting the values of ${{\sin }^{2}}2\theta $ in the given equation, we get,
$1-{{\cos }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$
On rearranging the terms, we get,
$\begin{align}
& {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +1-\dfrac{3}{4}=0 \\
& {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +\dfrac{1}{4}=0 \\
\end{align}$
The above equation is in the form of ${{x}^{2}}-2ax+{{a}^{2}}$ which is equal to ${{\left( x-a \right)}^{2}}$.
Here, $x={{\cos }^{2}}2\theta \ and\ a=\dfrac{1}{2}$.
$\begin{align}
& \Rightarrow {{\left( {{\cos }^{2}}2\theta -\dfrac{1}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\cos }^{2}}2\theta =\dfrac{1}{2}={{\cos }^{2}}\left( \dfrac{\pi }{4} \right) \\
\end{align}$
Since, $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$.
We know the general solution for ${{\cos }^{2}}\theta ={{\cos }^{2}}\alpha $ is given by,
$\begin{align}
& \theta =n\pi \pm \alpha \\
& \Rightarrow 2\theta =n\pi \pm \dfrac{\pi }{4} \\
\end{align}$
For $n=0$,
$\begin{align}
& 2\theta =0\pm \dfrac{\pi }{4} \\
& \theta =\pm \dfrac{\pi }{8} \\
\end{align}$
Since, $\theta \in \left( 0,\dfrac{\pi }{2} \right)\Rightarrow \theta =\dfrac{\pi }{8}$
For $n=1$,
$\begin{align}
& 2\theta =\pi \pm \dfrac{\pi }{4} \\
& 2\theta =\pi +\dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{5\pi }{8} \\
& 2\theta =\pi -\dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{3\pi }{8} \\
\end{align}$
Since, $\dfrac{5\pi }{8}>\dfrac{\pi }{2}$. So, we cannot take this value according to the given condition in the question.
$\Rightarrow \theta =\dfrac{3\pi }{8}$ satisfies the question.
Hence, the solutions for the given equation are $\dfrac{\pi }{8}\ and\ \dfrac{3\pi }{8}$.
So, their sum $=\dfrac{\pi }{8}+\dfrac{3\pi }{8}$
$\begin{align}
& =\dfrac{\pi +3\pi }{8} \\
& =\dfrac{4\pi }{8} \\
& =\dfrac{\pi }{2} \\
\end{align}$
Therefore, the correct option is (A).
Note: Be careful while choosing the option as sometimes we just forget that we have to find the sum of the values that satisfy the equation instead of it we choose the value i.e. option (C) $\dfrac{3\pi }{8}$.
Also, remember that while finding the value of $'\theta '$ take care of the given condition on $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ otherwise you will get an extra root.
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
After that we will use the general solution for \[{{\cos }^{2}}\theta ={{\cos }^{2}}\alpha \] given by,
$\theta =n\pi \pm \alpha $
Complete step-by-step answer:
We have been asked to find the sum of all values of $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ satisfying ${{\sin }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$.
We know that ${{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta =1$, which is a trigonometric identity.
${{\sin }^{2}}2\theta =1-{{\cos }^{2}}2\theta $
Substituting the values of ${{\sin }^{2}}2\theta $ in the given equation, we get,
$1-{{\cos }^{2}}2\theta +{{\cos }^{4}}2\theta =\dfrac{3}{4}$
On rearranging the terms, we get,
$\begin{align}
& {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +1-\dfrac{3}{4}=0 \\
& {{\left( {{\cos }^{2}}2\theta \right)}^{2}}-{{\cos }^{2}}2\theta +\dfrac{1}{4}=0 \\
\end{align}$
The above equation is in the form of ${{x}^{2}}-2ax+{{a}^{2}}$ which is equal to ${{\left( x-a \right)}^{2}}$.
Here, $x={{\cos }^{2}}2\theta \ and\ a=\dfrac{1}{2}$.
$\begin{align}
& \Rightarrow {{\left( {{\cos }^{2}}2\theta -\dfrac{1}{2} \right)}^{2}}=0 \\
& \Rightarrow {{\cos }^{2}}2\theta =\dfrac{1}{2}={{\cos }^{2}}\left( \dfrac{\pi }{4} \right) \\
\end{align}$
Since, $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$.
We know the general solution for ${{\cos }^{2}}\theta ={{\cos }^{2}}\alpha $ is given by,
$\begin{align}
& \theta =n\pi \pm \alpha \\
& \Rightarrow 2\theta =n\pi \pm \dfrac{\pi }{4} \\
\end{align}$
For $n=0$,
$\begin{align}
& 2\theta =0\pm \dfrac{\pi }{4} \\
& \theta =\pm \dfrac{\pi }{8} \\
\end{align}$
Since, $\theta \in \left( 0,\dfrac{\pi }{2} \right)\Rightarrow \theta =\dfrac{\pi }{8}$
For $n=1$,
$\begin{align}
& 2\theta =\pi \pm \dfrac{\pi }{4} \\
& 2\theta =\pi +\dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{5\pi }{8} \\
& 2\theta =\pi -\dfrac{\pi }{4} \\
& \Rightarrow \theta =\dfrac{3\pi }{8} \\
\end{align}$
Since, $\dfrac{5\pi }{8}>\dfrac{\pi }{2}$. So, we cannot take this value according to the given condition in the question.
$\Rightarrow \theta =\dfrac{3\pi }{8}$ satisfies the question.
Hence, the solutions for the given equation are $\dfrac{\pi }{8}\ and\ \dfrac{3\pi }{8}$.
So, their sum $=\dfrac{\pi }{8}+\dfrac{3\pi }{8}$
$\begin{align}
& =\dfrac{\pi +3\pi }{8} \\
& =\dfrac{4\pi }{8} \\
& =\dfrac{\pi }{2} \\
\end{align}$
Therefore, the correct option is (A).
Note: Be careful while choosing the option as sometimes we just forget that we have to find the sum of the values that satisfy the equation instead of it we choose the value i.e. option (C) $\dfrac{3\pi }{8}$.
Also, remember that while finding the value of $'\theta '$ take care of the given condition on $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ otherwise you will get an extra root.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
