
The sum of \[12\] term of the series: ${}^{12}{C_1} \cdot \dfrac{1}{3} + {}^{12}{C_2} \cdot \dfrac{1}{9} + {}^{12}{C_3} \cdot \dfrac{1}{{27}} + ........$ is-
(A) ${\left( {\dfrac{4}{3}} \right)^{12}} - 1$
(B) ${\left( {\dfrac{3}{4}} \right)^{12}} - 1$
(C) ${\left( {\dfrac{3}{4}} \right)^{12}} + 1$
(D)none of these
Answer
567.6k+ views
Hint: Use the formula ${\left( {1 + x} \right)^n} = {}^n{C_0}{\left( x \right)^0} + {}^n{C_1}{\left( x \right)^1} + {}^n{C_2}{\left( x \right)^2} + ........... + {}^n{C_n}{\left( x \right)^n}$ to find the sum of \[12\] term of the series: ${}^{12}{C_1} \cdot \dfrac{1}{3} + {}^{12}{C_2} \cdot \dfrac{1}{9} + {}^{12}{C_3} \cdot \dfrac{1}{{27}} + ........$
Complete step-by-step answer:
We have to find the sum of \[12\] term of the series: ${}^{12}{C_1} \cdot \dfrac{1}{3} + {}^{12}{C_2} \cdot \dfrac{1}{9} + {}^{12}{C_3} \cdot \dfrac{1}{{27}} + ........$.
We know that, ${\left( {1 + x} \right)^n} = {}^n{C_0}{\left( x \right)^0} + {}^n{C_1}{\left( x \right)^1} + {}^n{C_2}{\left( x \right)^2} + ........... + {}^n{C_n}{\left( x \right)^n}$
Put $n = 12$ and $x = \dfrac{1}{3}$, we get-
${\left( {1 + \dfrac{1}{3}} \right)^{12}} = {}^{12}{C_0}{\left( {\dfrac{1}{3}} \right)^0} + {}^{12}{C_1}{\left( {\dfrac{1}{3}} \right)^1} + {}^{12}{C_2}{\left( {\dfrac{1}{3}} \right)^2} + ........... + {}^{12}{C_{12}}{\left( {\dfrac{1}{3}} \right)^{12}}$
$ \Rightarrow $${\left( {\dfrac{{3 + 1}}{3}} \right)^{12}} = {}^{12}{C_0} + {}^{12}{C_1}\left( {\dfrac{1}{3}} \right) + {}^{12}{C_2}\left( {\dfrac{1}{9}} \right) + ........... + {}^{12}{C_{12}}{\left( {\dfrac{1}{3}} \right)^{12}}$
We know that ${}^n{C_0} = 1$, therefore, ${}^{12}{C_0} = 1$
$ \Rightarrow $${\left( {\dfrac{4}{3}} \right)^{12}} = 1 + {}^{12}{C_1}\left( {\dfrac{1}{3}} \right) + {}^{12}{C_2}\left( {\dfrac{1}{9}} \right) + ........... + {}^{12}{C_{12}}{\left( {\dfrac{1}{3}} \right)^{12}}$
$ \Rightarrow $\[{}^{12}{C_1}\left( {\dfrac{1}{3}} \right) + {}^{12}{C_2}\left( {\dfrac{1}{9}} \right) + ........... + {}^{12}{C_{12}}{\left( {\dfrac{1}{3}} \right)^{12}} = {\left( {\dfrac{4}{3}} \right)^{12}} - 1\]
Hence, option (A) is the correct answer.
Note: The value of ${}^{12}{C_0}$ can be calculate as follows:
We know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Put $n = 12,r = 0$
${}^{12}{C_0} = \dfrac{{12!}}{{0!\left( {12 - 0} \right)!}}$
${}^{12}{C_0} = \dfrac{{12!}}{{12!}}$
${}^{12}{C_0} = 1$
Complete step-by-step answer:
We have to find the sum of \[12\] term of the series: ${}^{12}{C_1} \cdot \dfrac{1}{3} + {}^{12}{C_2} \cdot \dfrac{1}{9} + {}^{12}{C_3} \cdot \dfrac{1}{{27}} + ........$.
We know that, ${\left( {1 + x} \right)^n} = {}^n{C_0}{\left( x \right)^0} + {}^n{C_1}{\left( x \right)^1} + {}^n{C_2}{\left( x \right)^2} + ........... + {}^n{C_n}{\left( x \right)^n}$
Put $n = 12$ and $x = \dfrac{1}{3}$, we get-
${\left( {1 + \dfrac{1}{3}} \right)^{12}} = {}^{12}{C_0}{\left( {\dfrac{1}{3}} \right)^0} + {}^{12}{C_1}{\left( {\dfrac{1}{3}} \right)^1} + {}^{12}{C_2}{\left( {\dfrac{1}{3}} \right)^2} + ........... + {}^{12}{C_{12}}{\left( {\dfrac{1}{3}} \right)^{12}}$
$ \Rightarrow $${\left( {\dfrac{{3 + 1}}{3}} \right)^{12}} = {}^{12}{C_0} + {}^{12}{C_1}\left( {\dfrac{1}{3}} \right) + {}^{12}{C_2}\left( {\dfrac{1}{9}} \right) + ........... + {}^{12}{C_{12}}{\left( {\dfrac{1}{3}} \right)^{12}}$
We know that ${}^n{C_0} = 1$, therefore, ${}^{12}{C_0} = 1$
$ \Rightarrow $${\left( {\dfrac{4}{3}} \right)^{12}} = 1 + {}^{12}{C_1}\left( {\dfrac{1}{3}} \right) + {}^{12}{C_2}\left( {\dfrac{1}{9}} \right) + ........... + {}^{12}{C_{12}}{\left( {\dfrac{1}{3}} \right)^{12}}$
$ \Rightarrow $\[{}^{12}{C_1}\left( {\dfrac{1}{3}} \right) + {}^{12}{C_2}\left( {\dfrac{1}{9}} \right) + ........... + {}^{12}{C_{12}}{\left( {\dfrac{1}{3}} \right)^{12}} = {\left( {\dfrac{4}{3}} \right)^{12}} - 1\]
Hence, option (A) is the correct answer.
Note: The value of ${}^{12}{C_0}$ can be calculate as follows:
We know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Put $n = 12,r = 0$
${}^{12}{C_0} = \dfrac{{12!}}{{0!\left( {12 - 0} \right)!}}$
${}^{12}{C_0} = \dfrac{{12!}}{{12!}}$
${}^{12}{C_0} = 1$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

