
The sum and difference of A.M. and G.M. of two observations are $ 27 $ and $ 3 $ respectively. Find the observations.
Answer
589.8k+ views
Hint: In this problem, we need to find two observations such that the sum of their arithmetic mean (A.M.) and geometric mean (G.M.) will be $ 27 $ and the difference of their A.M. and G.M. will be $ 3 $ . For this, first we will write the formula of A.M. and G.M. of two assumed numbers say $ x $ and $ y $ . Then, we will use a simple elimination method to find values of $ x $ and $ y $ .
Complete step-by-step answer:
Let us assume that $ x $ and $ y $ are two required observations. We know that arithmetic mean (A.M.) of two observations $ x $ and $ y $ is given by $ \dfrac{{x + y}}{2} $ . Also we know that the geometric mean (G.M.) of two observations $ x $ and $ y $ is given by $ \sqrt {xy} $ .
In the problem, it is given that the sum of A.M. and G.M. of two observations $ x $ and $ y $ is $ 27 $ . So, we can write $ \left( {\dfrac{{x + y}}{2}} \right) + \left( {\sqrt {xy} } \right) = 27 \cdots \cdots \left( 1 \right) $ .
Let us simplify the equation $ \left( 1 \right) $ . Therefore, we get
$
x + y + 2\sqrt {xy} = 2\left( {27} \right) \\
\Rightarrow x + 2\left( {\sqrt x } \right)\left( {\sqrt y } \right) + y = 54 \cdots \cdots \left( 2 \right) \\
$
We know that $ {\left( {\sqrt x } \right)^2} = x $ and $ {\left( {\sqrt y } \right)^2} = y $ . Use this information on LHS of the equation $ \left( 2 \right) $ . Therefore, we get $ {\left( {\sqrt x } \right)^2} + 2\left( {\sqrt x } \right)\left( {\sqrt y } \right) + {\left( {\sqrt y } \right)^2} = 54 \cdots \cdots \left( 3 \right) $ . Also we know that $ {a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2} $ . Use this information on LHS of the equation $ \left( 3 \right) $ . So, we get
$
{\left( {\sqrt x + \sqrt y } \right)^2} = 54 \\
\Rightarrow \sqrt x + \sqrt y = \sqrt {54} \\
\Rightarrow \sqrt x + \sqrt y = \sqrt {9 \times 6} \\
\Rightarrow \sqrt x + \sqrt y = 3\sqrt 6 \cdots \cdots \left( 4 \right) \\
$
In the problem, it is also given that the difference of A.M. and G.M. of two observations $ x $ and $ y $ is $ 3 $ . So, we can write $ \left( {\dfrac{{x + y}}{2}} \right) - \left( {\sqrt {xy} } \right) = 3 \cdots \cdots \left( 5 \right) $ .
Let us simplify the equation $ \left( 5 \right) $ . Therefore, we get
$
x + y - 2\sqrt {xy} = 2\left( 3 \right) \\
\Rightarrow x - 2\left( {\sqrt x } \right)\left( {\sqrt y } \right) + y = 6 \\
\Rightarrow {\left( {\sqrt x } \right)^2} - 2\left( {\sqrt x } \right)\left( {\sqrt y } \right) + {\left( {\sqrt y } \right)^2} = 6 \cdots \cdots \left( 6 \right) \\
$
Also we know that $ {a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2} $ . Use this information on LHS of the equation $ \left( 6 \right) $ . So, we get
$
{\left( {\sqrt x - \sqrt y } \right)^2} = 6 \\
\Rightarrow \sqrt x - \sqrt y = \sqrt 6 \cdots \cdots \left( 7 \right) \\
$
Now we will add equations $ \left( 4 \right) $ and $ \left( 7 \right) $ to eliminate $ y $ . Therefore, we get
$
\sqrt x + \sqrt y + \sqrt x - \sqrt y = 3\sqrt 6 + \sqrt 6 \\
\Rightarrow 2\sqrt x = 4\sqrt 6 \\
\Rightarrow {\left( {2\sqrt x } \right)^2} = {\left( {4\sqrt 6 } \right)^2} \\
\Rightarrow 4x = 16 \times 6 \\
\Rightarrow x = \dfrac{{16 \times 6}}{4} \\
\Rightarrow x = 24 \\
$
Now we will substitute $ x = 24 $ in the equation $ \left( 4 \right) $ to find the value of $ y $ . Therefore, we get
$
\sqrt {24} + \sqrt y = 3\sqrt 6 \\
\Rightarrow \sqrt {4 \times 6} + \sqrt y = 3\sqrt 6 \\
\Rightarrow \sqrt y = 3\sqrt 6 - 2\sqrt 6 \\
\Rightarrow \sqrt y = \sqrt 6 \\
\Rightarrow {\left( {\sqrt y } \right)^2} = {\left( {\sqrt 6 } \right)^2} \\
\Rightarrow y = 6 \\
$
Therefore, we can say that the required observations are $ 24 $ and $ 6 $ .
Note: If there are $ n $ positive numbers say $ {a_1},{a_2}, \ldots ,{a_n} $ then arithmetic mean (A.M.) is obtained by using the formula $ \dfrac{{{a_1} + {a_2} + \ldots + {a_n}}}{n} $ and geometric mean is obtained by using the formula $ \sqrt[n]{{{a_1} \times {a_2} \times \ldots \times {a_n}}} $ . The sum of A.M. and G.M. is always positive. Also the difference between A.M. and G.M. is always positive.
Complete step-by-step answer:
Let us assume that $ x $ and $ y $ are two required observations. We know that arithmetic mean (A.M.) of two observations $ x $ and $ y $ is given by $ \dfrac{{x + y}}{2} $ . Also we know that the geometric mean (G.M.) of two observations $ x $ and $ y $ is given by $ \sqrt {xy} $ .
In the problem, it is given that the sum of A.M. and G.M. of two observations $ x $ and $ y $ is $ 27 $ . So, we can write $ \left( {\dfrac{{x + y}}{2}} \right) + \left( {\sqrt {xy} } \right) = 27 \cdots \cdots \left( 1 \right) $ .
Let us simplify the equation $ \left( 1 \right) $ . Therefore, we get
$
x + y + 2\sqrt {xy} = 2\left( {27} \right) \\
\Rightarrow x + 2\left( {\sqrt x } \right)\left( {\sqrt y } \right) + y = 54 \cdots \cdots \left( 2 \right) \\
$
We know that $ {\left( {\sqrt x } \right)^2} = x $ and $ {\left( {\sqrt y } \right)^2} = y $ . Use this information on LHS of the equation $ \left( 2 \right) $ . Therefore, we get $ {\left( {\sqrt x } \right)^2} + 2\left( {\sqrt x } \right)\left( {\sqrt y } \right) + {\left( {\sqrt y } \right)^2} = 54 \cdots \cdots \left( 3 \right) $ . Also we know that $ {a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2} $ . Use this information on LHS of the equation $ \left( 3 \right) $ . So, we get
$
{\left( {\sqrt x + \sqrt y } \right)^2} = 54 \\
\Rightarrow \sqrt x + \sqrt y = \sqrt {54} \\
\Rightarrow \sqrt x + \sqrt y = \sqrt {9 \times 6} \\
\Rightarrow \sqrt x + \sqrt y = 3\sqrt 6 \cdots \cdots \left( 4 \right) \\
$
In the problem, it is also given that the difference of A.M. and G.M. of two observations $ x $ and $ y $ is $ 3 $ . So, we can write $ \left( {\dfrac{{x + y}}{2}} \right) - \left( {\sqrt {xy} } \right) = 3 \cdots \cdots \left( 5 \right) $ .
Let us simplify the equation $ \left( 5 \right) $ . Therefore, we get
$
x + y - 2\sqrt {xy} = 2\left( 3 \right) \\
\Rightarrow x - 2\left( {\sqrt x } \right)\left( {\sqrt y } \right) + y = 6 \\
\Rightarrow {\left( {\sqrt x } \right)^2} - 2\left( {\sqrt x } \right)\left( {\sqrt y } \right) + {\left( {\sqrt y } \right)^2} = 6 \cdots \cdots \left( 6 \right) \\
$
Also we know that $ {a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2} $ . Use this information on LHS of the equation $ \left( 6 \right) $ . So, we get
$
{\left( {\sqrt x - \sqrt y } \right)^2} = 6 \\
\Rightarrow \sqrt x - \sqrt y = \sqrt 6 \cdots \cdots \left( 7 \right) \\
$
Now we will add equations $ \left( 4 \right) $ and $ \left( 7 \right) $ to eliminate $ y $ . Therefore, we get
$
\sqrt x + \sqrt y + \sqrt x - \sqrt y = 3\sqrt 6 + \sqrt 6 \\
\Rightarrow 2\sqrt x = 4\sqrt 6 \\
\Rightarrow {\left( {2\sqrt x } \right)^2} = {\left( {4\sqrt 6 } \right)^2} \\
\Rightarrow 4x = 16 \times 6 \\
\Rightarrow x = \dfrac{{16 \times 6}}{4} \\
\Rightarrow x = 24 \\
$
Now we will substitute $ x = 24 $ in the equation $ \left( 4 \right) $ to find the value of $ y $ . Therefore, we get
$
\sqrt {24} + \sqrt y = 3\sqrt 6 \\
\Rightarrow \sqrt {4 \times 6} + \sqrt y = 3\sqrt 6 \\
\Rightarrow \sqrt y = 3\sqrt 6 - 2\sqrt 6 \\
\Rightarrow \sqrt y = \sqrt 6 \\
\Rightarrow {\left( {\sqrt y } \right)^2} = {\left( {\sqrt 6 } \right)^2} \\
\Rightarrow y = 6 \\
$
Therefore, we can say that the required observations are $ 24 $ and $ 6 $ .
Note: If there are $ n $ positive numbers say $ {a_1},{a_2}, \ldots ,{a_n} $ then arithmetic mean (A.M.) is obtained by using the formula $ \dfrac{{{a_1} + {a_2} + \ldots + {a_n}}}{n} $ and geometric mean is obtained by using the formula $ \sqrt[n]{{{a_1} \times {a_2} \times \ldots \times {a_n}}} $ . The sum of A.M. and G.M. is always positive. Also the difference between A.M. and G.M. is always positive.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

