
The speed of an electromagnetic wave in a material medium is given by $v = \dfrac{1}{{\sqrt {\mu \varepsilon }}}$ , $\mu $ being the permeability of the medium and $\varepsilon $ its permittivity. How does its frequency change?
Answer
564.9k+ views
Hint: Electromagnetic waves (EMs), transmitting energy and momentum across space turn electric and magnetic fields. EM waves are Maxwell equation solutions, the main electrodynamics equations. No medium is required, EM waves will move in empty space. One form of electromagnetic wave is sinusoidal waves of the plane. Not all EM waves are sine waves, but any electromagnetic wave can be interpreted as a linear overlay of the sine waves in arbitrary directions.
Complete step by step solution:
In view of the new applications of EM waves, especially on newer and higher frequencies, this interest appears to increase. The propagation of the EM wave depends primarily on its frequency (or wavelength). And if an EM wave interacts with an object / material, it is mirrored, refracted, dispersed, attenuated, diffracted, or absorbed. Each of those effects depends on the EM wave(s) frequency since the wavelength size (relative to the object / material) is significant.
Because of the wide spectrum of EM waves used in a variety of applications these days, the results are various. This often confuses the science community, since it is sometimes unknown how often the consequences are most prominent.
The intrinsic characteristic of electromagnetic waves is their frequency. When an electric wave is travelling from media to media, it changes the wavelength, but the frequency is constant.
Note: QM considers photons as quanta or energy bundles. Quantum mechanics However, those quanta do not behave as macroscopic particles. We assume that in the case of a macroscopic particle, its position and its speed can be determined randomly at any moment. Since we did this, we can randomly forecast its eventual motion with accuracy and consistency. However, we can only estimate the likelihood of locating the photon at a given location on any photon. This chance can be determined using the electromagnetic wave equation. When the wave equation predicts a high intensity of light, the likelihood is big and the likelihood is small if it predicts a low intensity of light.
Complete step by step solution:
In view of the new applications of EM waves, especially on newer and higher frequencies, this interest appears to increase. The propagation of the EM wave depends primarily on its frequency (or wavelength). And if an EM wave interacts with an object / material, it is mirrored, refracted, dispersed, attenuated, diffracted, or absorbed. Each of those effects depends on the EM wave(s) frequency since the wavelength size (relative to the object / material) is significant.
Because of the wide spectrum of EM waves used in a variety of applications these days, the results are various. This often confuses the science community, since it is sometimes unknown how often the consequences are most prominent.
The intrinsic characteristic of electromagnetic waves is their frequency. When an electric wave is travelling from media to media, it changes the wavelength, but the frequency is constant.
Note: QM considers photons as quanta or energy bundles. Quantum mechanics However, those quanta do not behave as macroscopic particles. We assume that in the case of a macroscopic particle, its position and its speed can be determined randomly at any moment. Since we did this, we can randomly forecast its eventual motion with accuracy and consistency. However, we can only estimate the likelihood of locating the photon at a given location on any photon. This chance can be determined using the electromagnetic wave equation. When the wave equation predicts a high intensity of light, the likelihood is big and the likelihood is small if it predicts a low intensity of light.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

