
The solution to the equation \[\dfrac{{dy}}{{dx}} = \sin \left( {x + y} \right) + \cos \left( {x + y} \right)\] is:
A. $\log \left[ {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] + c = 0$
B. $\log \left[ {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] = x + c$
C. $\log \left[ {1 - \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] = x + c$
D. None of these
Answer
577.8k+ views
Hint: First we’ll substitute the dependent variable with a new variable then will proceed to solve for that variable, here we’ll substitute (x+y) with a new variable, then on differentiating with-respect-to independent variable we’ll also substitute the derivative of the dependent variable, then will further proceed.
Complete step by step answer:
Given data: \[\dfrac{{dy}}{{dx}} = \sin \left( {x + y} \right) + \cos \left( {x + y} \right).............(i)\]
Let us assume that, \[x + y = t\]
On differentiating with respect to ‘x’,
i.e. \[1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1\]
On substituting the value of\[\dfrac{{dy}}{{dx}}\]and \['x + y'\] in equation (i), we get,
\[\dfrac{{dt}}{{dx}} - 1 = \sin t + \cos t\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 1 + \sin t + \cos t\]
Using the double-angle formula of sin(A) and cos(A)
i.e. \[\sin (2A) = 2\sin A\cos A\]
And, \[\cos (2A) = 2{\cos ^2}A - 1\]
We’ll get,
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 1 + 2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{\cos ^2}\left( {\dfrac{t}{2}} \right) - 1\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{\cos ^2}\left( {\dfrac{t}{2}} \right)\]
Now solving for ‘t’ and ‘x’, we’ll use the variable separation method
\[ \Rightarrow \dfrac{{dt}}{{2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx\]
Multiplying and dividing left side by \[{\sec ^2}\left( {\dfrac{t}{2}} \right)\] , we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2{{\sec }^2}\left( {\dfrac{t}{2}} \right)\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\sec }^2}\left( {\dfrac{t}{2}} \right){{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx\]
On using, ${\sec ^2}A = \dfrac{1}{{{{\cos }^2}A}}$ in the denominator, we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\dfrac{{\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} + 2\dfrac{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}}}} = dx\]
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\cos \left( {\dfrac{t}{2}} \right)}} + 2}} = dx\]
Now, using$\dfrac{{\sin A}}{{\cos A}} = \tan A$, we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\tan \left( {\dfrac{t}{2}} \right) + 2}} = dx\]
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\left[ {\tan \left( {\dfrac{t}{2}} \right) + 1} \right]}} = dx........(ii)\]
Now, let \[p = 1 + \tan \left( {\dfrac{t}{2}} \right)\]
On differentiating with respect to ‘t’, we get,
\[ \Rightarrow \dfrac{{dp}}{{dt}} = \dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)\]
\[ \Rightarrow dp = \dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)dt\]
Substituting the value of $1 + \tan \left( {\dfrac{t}{2}} \right)$ and $\dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)$ in equation (ii), we get,
$ \Rightarrow \dfrac{{dp}}{p} = dx$
Now taking the integral of both the sides,
$ \Rightarrow \smallint \dfrac{{dp}}{p} = \smallint dx$
Using $\smallint \dfrac{{dz}}{z} = \log z + c$ and $\smallint dx = x + c$, we get,
$ \Rightarrow \log p = x + C$
Substituting the value of ‘p’, we get,
$ \Rightarrow \log \left( {1 + \tan \left( {\dfrac{t}{2}} \right)} \right) = x + C$
Now, substituting the value of ‘t’, we get,
$\therefore \log \left( {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right) = x + C$
Therefore, option (B) is correct
Note: In the above solution we used the variable separable method to solve the particular differential equation.
Generally, variable separable method is used when we can rewrite the equation such that on either side of the equation there are terms of only one variable,
$f(x)g(y)dx = g(x)f(y)dy$
Then on separating the similar variable terms,
$ \Rightarrow \dfrac{{f(x)}}{{g(x)}}dx = \dfrac{{f(y)}}{{g(y)}}dy$, than we can simplify easily.
Complete step by step answer:
Given data: \[\dfrac{{dy}}{{dx}} = \sin \left( {x + y} \right) + \cos \left( {x + y} \right).............(i)\]
Let us assume that, \[x + y = t\]
On differentiating with respect to ‘x’,
i.e. \[1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1\]
On substituting the value of\[\dfrac{{dy}}{{dx}}\]and \['x + y'\] in equation (i), we get,
\[\dfrac{{dt}}{{dx}} - 1 = \sin t + \cos t\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 1 + \sin t + \cos t\]
Using the double-angle formula of sin(A) and cos(A)
i.e. \[\sin (2A) = 2\sin A\cos A\]
And, \[\cos (2A) = 2{\cos ^2}A - 1\]
We’ll get,
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 1 + 2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{\cos ^2}\left( {\dfrac{t}{2}} \right) - 1\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{\cos ^2}\left( {\dfrac{t}{2}} \right)\]
Now solving for ‘t’ and ‘x’, we’ll use the variable separation method
\[ \Rightarrow \dfrac{{dt}}{{2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx\]
Multiplying and dividing left side by \[{\sec ^2}\left( {\dfrac{t}{2}} \right)\] , we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2{{\sec }^2}\left( {\dfrac{t}{2}} \right)\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\sec }^2}\left( {\dfrac{t}{2}} \right){{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx\]
On using, ${\sec ^2}A = \dfrac{1}{{{{\cos }^2}A}}$ in the denominator, we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\dfrac{{\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} + 2\dfrac{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}}}} = dx\]
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\cos \left( {\dfrac{t}{2}} \right)}} + 2}} = dx\]
Now, using$\dfrac{{\sin A}}{{\cos A}} = \tan A$, we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\tan \left( {\dfrac{t}{2}} \right) + 2}} = dx\]
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\left[ {\tan \left( {\dfrac{t}{2}} \right) + 1} \right]}} = dx........(ii)\]
Now, let \[p = 1 + \tan \left( {\dfrac{t}{2}} \right)\]
On differentiating with respect to ‘t’, we get,
\[ \Rightarrow \dfrac{{dp}}{{dt}} = \dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)\]
\[ \Rightarrow dp = \dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)dt\]
Substituting the value of $1 + \tan \left( {\dfrac{t}{2}} \right)$ and $\dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)$ in equation (ii), we get,
$ \Rightarrow \dfrac{{dp}}{p} = dx$
Now taking the integral of both the sides,
$ \Rightarrow \smallint \dfrac{{dp}}{p} = \smallint dx$
Using $\smallint \dfrac{{dz}}{z} = \log z + c$ and $\smallint dx = x + c$, we get,
$ \Rightarrow \log p = x + C$
Substituting the value of ‘p’, we get,
$ \Rightarrow \log \left( {1 + \tan \left( {\dfrac{t}{2}} \right)} \right) = x + C$
Now, substituting the value of ‘t’, we get,
$\therefore \log \left( {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right) = x + C$
Therefore, option (B) is correct
Note: In the above solution we used the variable separable method to solve the particular differential equation.
Generally, variable separable method is used when we can rewrite the equation such that on either side of the equation there are terms of only one variable,
$f(x)g(y)dx = g(x)f(y)dy$
Then on separating the similar variable terms,
$ \Rightarrow \dfrac{{f(x)}}{{g(x)}}dx = \dfrac{{f(y)}}{{g(y)}}dy$, than we can simplify easily.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

