
The solution to the equation \[\dfrac{{dy}}{{dx}} = \sin \left( {x + y} \right) + \cos \left( {x + y} \right)\] is:
A. $\log \left[ {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] + c = 0$
B. $\log \left[ {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] = x + c$
C. $\log \left[ {1 - \tan \left( {\dfrac{{x + y}}{2}} \right)} \right] = x + c$
D. None of these
Answer
591.9k+ views
Hint: First we’ll substitute the dependent variable with a new variable then will proceed to solve for that variable, here we’ll substitute (x+y) with a new variable, then on differentiating with-respect-to independent variable we’ll also substitute the derivative of the dependent variable, then will further proceed.
Complete step by step answer:
Given data: \[\dfrac{{dy}}{{dx}} = \sin \left( {x + y} \right) + \cos \left( {x + y} \right).............(i)\]
Let us assume that, \[x + y = t\]
On differentiating with respect to ‘x’,
i.e. \[1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1\]
On substituting the value of\[\dfrac{{dy}}{{dx}}\]and \['x + y'\] in equation (i), we get,
\[\dfrac{{dt}}{{dx}} - 1 = \sin t + \cos t\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 1 + \sin t + \cos t\]
Using the double-angle formula of sin(A) and cos(A)
i.e. \[\sin (2A) = 2\sin A\cos A\]
And, \[\cos (2A) = 2{\cos ^2}A - 1\]
We’ll get,
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 1 + 2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{\cos ^2}\left( {\dfrac{t}{2}} \right) - 1\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{\cos ^2}\left( {\dfrac{t}{2}} \right)\]
Now solving for ‘t’ and ‘x’, we’ll use the variable separation method
\[ \Rightarrow \dfrac{{dt}}{{2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx\]
Multiplying and dividing left side by \[{\sec ^2}\left( {\dfrac{t}{2}} \right)\] , we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2{{\sec }^2}\left( {\dfrac{t}{2}} \right)\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\sec }^2}\left( {\dfrac{t}{2}} \right){{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx\]
On using, ${\sec ^2}A = \dfrac{1}{{{{\cos }^2}A}}$ in the denominator, we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\dfrac{{\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} + 2\dfrac{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}}}} = dx\]
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\cos \left( {\dfrac{t}{2}} \right)}} + 2}} = dx\]
Now, using$\dfrac{{\sin A}}{{\cos A}} = \tan A$, we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\tan \left( {\dfrac{t}{2}} \right) + 2}} = dx\]
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\left[ {\tan \left( {\dfrac{t}{2}} \right) + 1} \right]}} = dx........(ii)\]
Now, let \[p = 1 + \tan \left( {\dfrac{t}{2}} \right)\]
On differentiating with respect to ‘t’, we get,
\[ \Rightarrow \dfrac{{dp}}{{dt}} = \dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)\]
\[ \Rightarrow dp = \dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)dt\]
Substituting the value of $1 + \tan \left( {\dfrac{t}{2}} \right)$ and $\dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)$ in equation (ii), we get,
$ \Rightarrow \dfrac{{dp}}{p} = dx$
Now taking the integral of both the sides,
$ \Rightarrow \smallint \dfrac{{dp}}{p} = \smallint dx$
Using $\smallint \dfrac{{dz}}{z} = \log z + c$ and $\smallint dx = x + c$, we get,
$ \Rightarrow \log p = x + C$
Substituting the value of ‘p’, we get,
$ \Rightarrow \log \left( {1 + \tan \left( {\dfrac{t}{2}} \right)} \right) = x + C$
Now, substituting the value of ‘t’, we get,
$\therefore \log \left( {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right) = x + C$
Therefore, option (B) is correct
Note: In the above solution we used the variable separable method to solve the particular differential equation.
Generally, variable separable method is used when we can rewrite the equation such that on either side of the equation there are terms of only one variable,
$f(x)g(y)dx = g(x)f(y)dy$
Then on separating the similar variable terms,
$ \Rightarrow \dfrac{{f(x)}}{{g(x)}}dx = \dfrac{{f(y)}}{{g(y)}}dy$, than we can simplify easily.
Complete step by step answer:
Given data: \[\dfrac{{dy}}{{dx}} = \sin \left( {x + y} \right) + \cos \left( {x + y} \right).............(i)\]
Let us assume that, \[x + y = t\]
On differentiating with respect to ‘x’,
i.e. \[1 + \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dt}}{{dx}} - 1\]
On substituting the value of\[\dfrac{{dy}}{{dx}}\]and \['x + y'\] in equation (i), we get,
\[\dfrac{{dt}}{{dx}} - 1 = \sin t + \cos t\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 1 + \sin t + \cos t\]
Using the double-angle formula of sin(A) and cos(A)
i.e. \[\sin (2A) = 2\sin A\cos A\]
And, \[\cos (2A) = 2{\cos ^2}A - 1\]
We’ll get,
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 1 + 2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{\cos ^2}\left( {\dfrac{t}{2}} \right) - 1\]
\[ \Rightarrow \dfrac{{dt}}{{dx}} = 2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{\cos ^2}\left( {\dfrac{t}{2}} \right)\]
Now solving for ‘t’ and ‘x’, we’ll use the variable separation method
\[ \Rightarrow \dfrac{{dt}}{{2\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx\]
Multiplying and dividing left side by \[{\sec ^2}\left( {\dfrac{t}{2}} \right)\] , we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2{{\sec }^2}\left( {\dfrac{t}{2}} \right)\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right) + 2{{\sec }^2}\left( {\dfrac{t}{2}} \right){{\cos }^2}\left( {\dfrac{t}{2}} \right)}} = dx\]
On using, ${\sec ^2}A = \dfrac{1}{{{{\cos }^2}A}}$ in the denominator, we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\dfrac{{\sin \left( {\dfrac{t}{2}} \right)\cos \left( {\dfrac{t}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}} + 2\dfrac{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{t}{2}} \right)}}}} = dx\]
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\dfrac{{\sin \left( {\dfrac{t}{2}} \right)}}{{\cos \left( {\dfrac{t}{2}} \right)}} + 2}} = dx\]
Now, using$\dfrac{{\sin A}}{{\cos A}} = \tan A$, we get,
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\tan \left( {\dfrac{t}{2}} \right) + 2}} = dx\]
\[ \Rightarrow \dfrac{{{{\sec }^2}\left( {\dfrac{t}{2}} \right)dt}}{{2\left[ {\tan \left( {\dfrac{t}{2}} \right) + 1} \right]}} = dx........(ii)\]
Now, let \[p = 1 + \tan \left( {\dfrac{t}{2}} \right)\]
On differentiating with respect to ‘t’, we get,
\[ \Rightarrow \dfrac{{dp}}{{dt}} = \dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)\]
\[ \Rightarrow dp = \dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)dt\]
Substituting the value of $1 + \tan \left( {\dfrac{t}{2}} \right)$ and $\dfrac{1}{2}{\sec ^2}\left( {\dfrac{t}{2}} \right)$ in equation (ii), we get,
$ \Rightarrow \dfrac{{dp}}{p} = dx$
Now taking the integral of both the sides,
$ \Rightarrow \smallint \dfrac{{dp}}{p} = \smallint dx$
Using $\smallint \dfrac{{dz}}{z} = \log z + c$ and $\smallint dx = x + c$, we get,
$ \Rightarrow \log p = x + C$
Substituting the value of ‘p’, we get,
$ \Rightarrow \log \left( {1 + \tan \left( {\dfrac{t}{2}} \right)} \right) = x + C$
Now, substituting the value of ‘t’, we get,
$\therefore \log \left( {1 + \tan \left( {\dfrac{{x + y}}{2}} \right)} \right) = x + C$
Therefore, option (B) is correct
Note: In the above solution we used the variable separable method to solve the particular differential equation.
Generally, variable separable method is used when we can rewrite the equation such that on either side of the equation there are terms of only one variable,
$f(x)g(y)dx = g(x)f(y)dy$
Then on separating the similar variable terms,
$ \Rightarrow \dfrac{{f(x)}}{{g(x)}}dx = \dfrac{{f(y)}}{{g(y)}}dy$, than we can simplify easily.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

