
The solution set of the equation $${x^4} - 5{x^3} - 4{x^2} - 5x + 1 = 0$$ is
A.$$\left\{ {3 \pm 2\sqrt 2 ,\dfrac{{ - 1 \pm \sqrt 3 i}}{2}} \right\}$$
B.$$\left\{ {\dfrac{{3 \pm 2\sqrt 2 }}{2}, - 1 \pm \sqrt 3 i} \right\}$$
C.$$\left\{ { - 3 \pm 2\sqrt 2 ,\dfrac{{1 \pm \sqrt 3 i}}{2}} \right\}$$
D.$$\left\{ {\dfrac{{ - 3 \pm 2\sqrt 2 }}{2},1 \pm \sqrt 3 i} \right\}$$
Answer
504.3k+ views
Hint: Here given an algebraic equation we need to find the set of solutions. For this, first we have to convert the given equation to the form quadratic equation $$a{x^2} + bx + c = 0$$ by taking some substitution. Later solve the quadratic equation by using the formula $$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$$ on substituting the values we get the required solution.
Complete step-by-step answer:
Consider the given expression:
$$ \Rightarrow \,\,\,{x^4} - 5{x^3} - 4{x^2} - 5x + 1 = 0$$ -----(1)
Divide the whole equation by $${x^2}$$
$$ \Rightarrow \,\,\,{x^2} - 5x - 4 - \dfrac{5}{x} + \dfrac{1}{{{x^2}}} = 0$$
On rearranging, we have
$$ \Rightarrow \,\,\,{x^2} + \dfrac{1}{{{x^2}}} - 5\left( {x + \dfrac{1}{x}} \right) - 4 = 0$$ ----(2)
Let’s put $$\left( {x + \dfrac{1}{x}} \right) = m$$, then
$${\left( {x + \dfrac{1}{x}} \right)^2} = {m^2}$$
$${x^2} + \dfrac{1}{{{x^2}}} + 2\left( x \right)\left( {\dfrac{1}{x}} \right) = {m^2}$$
$${x^2} + \dfrac{1}{{{x^2}}} + 2\left( x \right)\left( {\dfrac{1}{x}} \right) = {m^2}$$
$${x^2} + \dfrac{1}{{{x^2}}} + 2 = {m^2}$$
$${x^2} + \dfrac{1}{{{x^2}}} = {m^2} - 2$$
Then equation (2) becomes
$$ \Rightarrow \,\,\,{m^2} - 2 - 5m - 4 = 0$$
$$ \Rightarrow \,\,\,{m^2} - 5m - 6 = 0$$ ----(3)
The above equation looks similar as quadratic equation in the form of $$a{x^2} + bx + c$$, then the formula of solution is $$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$$.
In equation (3), a=1, b=-5 and c=-6, then on substituting in formula we have
$$ \Rightarrow \,\,m = \dfrac{{ - \left( { - 5} \right) \pm \sqrt {{{\left( { - 5} \right)}^2} - 4\left( 1 \right)\left( { - 6} \right)} }}{{2\left( 1 \right)}}$$
$$ \Rightarrow \,\,m = \dfrac{{5 \pm \sqrt {25 + 24} }}{2}$$
$$ \Rightarrow \,\,m = \dfrac{{5 \pm \sqrt {49} }}{2}$$
$$ \Rightarrow \,\,m = \dfrac{{5 \pm 7}}{2}$$
$$ \Rightarrow \,\,m = \dfrac{{5 + 7}}{2}$$ and $$\,m = \dfrac{{5 - 7}}{2}$$
$$ \Rightarrow \,\,m = \dfrac{{12}}{2}$$ and $$m = \dfrac{{ - 2}}{2}$$
$$ \Rightarrow \,\,m = 6$$ and $$m = - 1$$
The solution of equation (3) is $$m = 6$$ and $$m = - 1$$.
If $$m = 6$$
Substitute $$m = \left( {x + \dfrac{1}{x}} \right)$$, then
$$ \Rightarrow \,\,\,\,x + \dfrac{1}{x} = 6$$
Take x as LCM in LHS, then
$$ \Rightarrow \,\,\,\,\dfrac{{{x^2} + 1}}{x} = 6$$
Multiply x on both side
$$ \Rightarrow \,\,\,\,{x^2} + 1 = 6x$$
Subtract 6x on both side
$$ \Rightarrow \,\,\,\,{x^2} - 6x + 1 = 0$$
Then the formula of quadratic equation
$$ \Rightarrow \,\,x = \dfrac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$$
$$ \Rightarrow \,\,x = \dfrac{{6 \pm \sqrt {36 - 4} }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{6 \pm \sqrt {32} }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{6 \pm 4\sqrt 2 }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{2\left( {3 \pm 2\sqrt 2 } \right)}}{2}$$
On simplification, we get
$$\therefore \,\,x = 3 \pm 2\sqrt 2 $$ -----(4)
If $$m = - 1$$
Substitute $$m = \left( {x + \dfrac{1}{x}} \right)$$, then
$$ \Rightarrow \,\,\,\,x + \dfrac{1}{x} = - 1$$
Take x as LCM in LHS, then
$$ \Rightarrow \,\,\,\,\dfrac{{{x^2} + 1}}{x} = - 1$$
Multiply x on both side
$$ \Rightarrow \,\,\,\,{x^2} + 1 = - x$$
Add x on both side
$$ \Rightarrow \,\,\,\,{x^2} + x + 1 = 0$$
Then the formula of quadratic equation
$$ \Rightarrow \,\,x = \dfrac{{ - \left( 1 \right) \pm \sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$$
$$ \Rightarrow \,\,x = \dfrac{{ - 1 \pm \sqrt {1 - 4} }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{ - 1 \pm \sqrt 3 \sqrt { - 1} }}{2}$$
As we know the value of $$\sqrt { - 1} = i$$
$$\therefore \,\,\,\,x = \dfrac{{ - 1 \pm \sqrt 3 \,i}}{2}$$ -----(5)
From (4) and (5)
Hence, the required solution is $$\left\{ {\,x = 3 \pm 2\sqrt 2 \,,\,\dfrac{{ - 1 \pm \sqrt 3 }}{2}} \right\}$$.
Therefore, option (A) is the correct answer.
So, the correct answer is “Option A”.
Note: The equation $$a{x^2} + bx + c$$ is the general form of the quadratic equation. The solution of quadratic can be find by using a formula $$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$$ here, a is the coefficient of $${x^2}$$, b is the coefficient of $$x$$ and c is the constant term. Remember the value of the imaginary number $$\sqrt { - 1} = i$$.
Complete step-by-step answer:
Consider the given expression:
$$ \Rightarrow \,\,\,{x^4} - 5{x^3} - 4{x^2} - 5x + 1 = 0$$ -----(1)
Divide the whole equation by $${x^2}$$
$$ \Rightarrow \,\,\,{x^2} - 5x - 4 - \dfrac{5}{x} + \dfrac{1}{{{x^2}}} = 0$$
On rearranging, we have
$$ \Rightarrow \,\,\,{x^2} + \dfrac{1}{{{x^2}}} - 5\left( {x + \dfrac{1}{x}} \right) - 4 = 0$$ ----(2)
Let’s put $$\left( {x + \dfrac{1}{x}} \right) = m$$, then
$${\left( {x + \dfrac{1}{x}} \right)^2} = {m^2}$$
$${x^2} + \dfrac{1}{{{x^2}}} + 2\left( x \right)\left( {\dfrac{1}{x}} \right) = {m^2}$$
$${x^2} + \dfrac{1}{{{x^2}}} + 2\left( x \right)\left( {\dfrac{1}{x}} \right) = {m^2}$$
$${x^2} + \dfrac{1}{{{x^2}}} + 2 = {m^2}$$
$${x^2} + \dfrac{1}{{{x^2}}} = {m^2} - 2$$
Then equation (2) becomes
$$ \Rightarrow \,\,\,{m^2} - 2 - 5m - 4 = 0$$
$$ \Rightarrow \,\,\,{m^2} - 5m - 6 = 0$$ ----(3)
The above equation looks similar as quadratic equation in the form of $$a{x^2} + bx + c$$, then the formula of solution is $$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$$.
In equation (3), a=1, b=-5 and c=-6, then on substituting in formula we have
$$ \Rightarrow \,\,m = \dfrac{{ - \left( { - 5} \right) \pm \sqrt {{{\left( { - 5} \right)}^2} - 4\left( 1 \right)\left( { - 6} \right)} }}{{2\left( 1 \right)}}$$
$$ \Rightarrow \,\,m = \dfrac{{5 \pm \sqrt {25 + 24} }}{2}$$
$$ \Rightarrow \,\,m = \dfrac{{5 \pm \sqrt {49} }}{2}$$
$$ \Rightarrow \,\,m = \dfrac{{5 \pm 7}}{2}$$
$$ \Rightarrow \,\,m = \dfrac{{5 + 7}}{2}$$ and $$\,m = \dfrac{{5 - 7}}{2}$$
$$ \Rightarrow \,\,m = \dfrac{{12}}{2}$$ and $$m = \dfrac{{ - 2}}{2}$$
$$ \Rightarrow \,\,m = 6$$ and $$m = - 1$$
The solution of equation (3) is $$m = 6$$ and $$m = - 1$$.
If $$m = 6$$
Substitute $$m = \left( {x + \dfrac{1}{x}} \right)$$, then
$$ \Rightarrow \,\,\,\,x + \dfrac{1}{x} = 6$$
Take x as LCM in LHS, then
$$ \Rightarrow \,\,\,\,\dfrac{{{x^2} + 1}}{x} = 6$$
Multiply x on both side
$$ \Rightarrow \,\,\,\,{x^2} + 1 = 6x$$
Subtract 6x on both side
$$ \Rightarrow \,\,\,\,{x^2} - 6x + 1 = 0$$
Then the formula of quadratic equation
$$ \Rightarrow \,\,x = \dfrac{{ - \left( { - 6} \right) \pm \sqrt {{{\left( { - 6} \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$$
$$ \Rightarrow \,\,x = \dfrac{{6 \pm \sqrt {36 - 4} }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{6 \pm \sqrt {32} }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{6 \pm 4\sqrt 2 }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{2\left( {3 \pm 2\sqrt 2 } \right)}}{2}$$
On simplification, we get
$$\therefore \,\,x = 3 \pm 2\sqrt 2 $$ -----(4)
If $$m = - 1$$
Substitute $$m = \left( {x + \dfrac{1}{x}} \right)$$, then
$$ \Rightarrow \,\,\,\,x + \dfrac{1}{x} = - 1$$
Take x as LCM in LHS, then
$$ \Rightarrow \,\,\,\,\dfrac{{{x^2} + 1}}{x} = - 1$$
Multiply x on both side
$$ \Rightarrow \,\,\,\,{x^2} + 1 = - x$$
Add x on both side
$$ \Rightarrow \,\,\,\,{x^2} + x + 1 = 0$$
Then the formula of quadratic equation
$$ \Rightarrow \,\,x = \dfrac{{ - \left( 1 \right) \pm \sqrt {{{\left( 1 \right)}^2} - 4\left( 1 \right)\left( 1 \right)} }}{{2\left( 1 \right)}}$$
$$ \Rightarrow \,\,x = \dfrac{{ - 1 \pm \sqrt {1 - 4} }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}$$
$$ \Rightarrow \,\,x = \dfrac{{ - 1 \pm \sqrt 3 \sqrt { - 1} }}{2}$$
As we know the value of $$\sqrt { - 1} = i$$
$$\therefore \,\,\,\,x = \dfrac{{ - 1 \pm \sqrt 3 \,i}}{2}$$ -----(5)
From (4) and (5)
Hence, the required solution is $$\left\{ {\,x = 3 \pm 2\sqrt 2 \,,\,\dfrac{{ - 1 \pm \sqrt 3 }}{2}} \right\}$$.
Therefore, option (A) is the correct answer.
So, the correct answer is “Option A”.
Note: The equation $$a{x^2} + bx + c$$ is the general form of the quadratic equation. The solution of quadratic can be find by using a formula $$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$$ here, a is the coefficient of $${x^2}$$, b is the coefficient of $$x$$ and c is the constant term. Remember the value of the imaginary number $$\sqrt { - 1} = i$$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

