
The solution set of $\ln (5 - 7x) \leqslant 1$ is given by,
A. $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
B. $\left[ {\dfrac{{2 - e}}{3},\dfrac{2}{3}} \right)$
C. $( - 10,7)$
D. All real numbers
Answer
563.4k+ views
Hint: The set containing all the solutions of an equation is called the solution set for that equation. We can find the interval of $x$ by solving the inequality.
Use the property of logarithm;
$\Rightarrow$ ${e^{\ln (x)}} = x$
Logarithmic function and exponential function are the inverse function.
Complete step-by-step answer:
We are asked to find the solution set of $\ln (5 - 7x) \leqslant 1$.
Remove the logarithm by taking exponential both sides of the inequality $\ln (5 - 7x) \leqslant 1$.
$\Rightarrow$$(5 - 7x) \leqslant e$
Logarithmic function and exponential function are the inverse function.
$\Rightarrow$$5 - e \leqslant 7x$
Divide both the sides by $7$.
$\Rightarrow$\[\dfrac{{5 - e}}{7} \leqslant \dfrac{{7x}}{7}\]
$\Rightarrow$\[ \Rightarrow \dfrac{{5 - e}}{7} \leqslant x \ldots (1)\]
All the solutions of $x$ greater than \[\dfrac{{5 - e}}{7}\].
Logarithmic function is defined for positive values.
$\Rightarrow$$5 - 7x > 0$
$\Rightarrow$$5 > 7x$
$\Rightarrow$$\dfrac{5}{7} > x \ldots (2)$
From the inequalities $(1)$ and $(2)$.
$\Rightarrow$$\dfrac{{5 - e}}{7} < x < \dfrac{5}{7}$
The solution set of $\ln (5 - 7x) \leqslant 1$ is $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$.
Correct Answer: $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
Note:
The logarithmic function is defined for positive values.
Use the property of logarithm;
$\Rightarrow$${e^{\ln (x)}} = x$
Use the property of logarithm;
$\Rightarrow$ ${e^{\ln (x)}} = x$
Logarithmic function and exponential function are the inverse function.
Complete step-by-step answer:
We are asked to find the solution set of $\ln (5 - 7x) \leqslant 1$.
Remove the logarithm by taking exponential both sides of the inequality $\ln (5 - 7x) \leqslant 1$.
$\Rightarrow$$(5 - 7x) \leqslant e$
Logarithmic function and exponential function are the inverse function.
$\Rightarrow$$5 - e \leqslant 7x$
Divide both the sides by $7$.
$\Rightarrow$\[\dfrac{{5 - e}}{7} \leqslant \dfrac{{7x}}{7}\]
$\Rightarrow$\[ \Rightarrow \dfrac{{5 - e}}{7} \leqslant x \ldots (1)\]
All the solutions of $x$ greater than \[\dfrac{{5 - e}}{7}\].
Logarithmic function is defined for positive values.
$\Rightarrow$$5 - 7x > 0$
$\Rightarrow$$5 > 7x$
$\Rightarrow$$\dfrac{5}{7} > x \ldots (2)$
From the inequalities $(1)$ and $(2)$.
$\Rightarrow$$\dfrac{{5 - e}}{7} < x < \dfrac{5}{7}$
The solution set of $\ln (5 - 7x) \leqslant 1$ is $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$.
Correct Answer: $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
Note:
The logarithmic function is defined for positive values.
Use the property of logarithm;
$\Rightarrow$${e^{\ln (x)}} = x$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

