
The solution set of $\ln (5 - 7x) \leqslant 1$ is given by,
A. $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
B. $\left[ {\dfrac{{2 - e}}{3},\dfrac{2}{3}} \right)$
C. $( - 10,7)$
D. All real numbers
Answer
547.8k+ views
Hint: The set containing all the solutions of an equation is called the solution set for that equation. We can find the interval of $x$ by solving the inequality.
Use the property of logarithm;
$\Rightarrow$ ${e^{\ln (x)}} = x$
Logarithmic function and exponential function are the inverse function.
Complete step-by-step answer:
We are asked to find the solution set of $\ln (5 - 7x) \leqslant 1$.
Remove the logarithm by taking exponential both sides of the inequality $\ln (5 - 7x) \leqslant 1$.
$\Rightarrow$$(5 - 7x) \leqslant e$
Logarithmic function and exponential function are the inverse function.
$\Rightarrow$$5 - e \leqslant 7x$
Divide both the sides by $7$.
$\Rightarrow$\[\dfrac{{5 - e}}{7} \leqslant \dfrac{{7x}}{7}\]
$\Rightarrow$\[ \Rightarrow \dfrac{{5 - e}}{7} \leqslant x \ldots (1)\]
All the solutions of $x$ greater than \[\dfrac{{5 - e}}{7}\].
Logarithmic function is defined for positive values.
$\Rightarrow$$5 - 7x > 0$
$\Rightarrow$$5 > 7x$
$\Rightarrow$$\dfrac{5}{7} > x \ldots (2)$
From the inequalities $(1)$ and $(2)$.
$\Rightarrow$$\dfrac{{5 - e}}{7} < x < \dfrac{5}{7}$
The solution set of $\ln (5 - 7x) \leqslant 1$ is $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$.
Correct Answer: $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
Note:
The logarithmic function is defined for positive values.
Use the property of logarithm;
$\Rightarrow$${e^{\ln (x)}} = x$
Use the property of logarithm;
$\Rightarrow$ ${e^{\ln (x)}} = x$
Logarithmic function and exponential function are the inverse function.
Complete step-by-step answer:
We are asked to find the solution set of $\ln (5 - 7x) \leqslant 1$.
Remove the logarithm by taking exponential both sides of the inequality $\ln (5 - 7x) \leqslant 1$.
$\Rightarrow$$(5 - 7x) \leqslant e$
Logarithmic function and exponential function are the inverse function.
$\Rightarrow$$5 - e \leqslant 7x$
Divide both the sides by $7$.
$\Rightarrow$\[\dfrac{{5 - e}}{7} \leqslant \dfrac{{7x}}{7}\]
$\Rightarrow$\[ \Rightarrow \dfrac{{5 - e}}{7} \leqslant x \ldots (1)\]
All the solutions of $x$ greater than \[\dfrac{{5 - e}}{7}\].
Logarithmic function is defined for positive values.
$\Rightarrow$$5 - 7x > 0$
$\Rightarrow$$5 > 7x$
$\Rightarrow$$\dfrac{5}{7} > x \ldots (2)$
From the inequalities $(1)$ and $(2)$.
$\Rightarrow$$\dfrac{{5 - e}}{7} < x < \dfrac{5}{7}$
The solution set of $\ln (5 - 7x) \leqslant 1$ is $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$.
Correct Answer: $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
Note:
The logarithmic function is defined for positive values.
Use the property of logarithm;
$\Rightarrow$${e^{\ln (x)}} = x$
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

