
The solution set of $\ln (5 - 7x) \leqslant 1$ is given by,
A. $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
B. $\left[ {\dfrac{{2 - e}}{3},\dfrac{2}{3}} \right)$
C. $( - 10,7)$
D. All real numbers
Answer
465.6k+ views
Hint: The set containing all the solutions of an equation is called the solution set for that equation. We can find the interval of $x$ by solving the inequality.
Use the property of logarithm;
$\Rightarrow$ ${e^{\ln (x)}} = x$
Logarithmic function and exponential function are the inverse function.
Complete step-by-step answer:
We are asked to find the solution set of $\ln (5 - 7x) \leqslant 1$.
Remove the logarithm by taking exponential both sides of the inequality $\ln (5 - 7x) \leqslant 1$.
$\Rightarrow$$(5 - 7x) \leqslant e$
Logarithmic function and exponential function are the inverse function.
$\Rightarrow$$5 - e \leqslant 7x$
Divide both the sides by $7$.
$\Rightarrow$\[\dfrac{{5 - e}}{7} \leqslant \dfrac{{7x}}{7}\]
$\Rightarrow$\[ \Rightarrow \dfrac{{5 - e}}{7} \leqslant x \ldots (1)\]
All the solutions of $x$ greater than \[\dfrac{{5 - e}}{7}\].
Logarithmic function is defined for positive values.
$\Rightarrow$$5 - 7x > 0$
$\Rightarrow$$5 > 7x$
$\Rightarrow$$\dfrac{5}{7} > x \ldots (2)$
From the inequalities $(1)$ and $(2)$.
$\Rightarrow$$\dfrac{{5 - e}}{7} < x < \dfrac{5}{7}$
The solution set of $\ln (5 - 7x) \leqslant 1$ is $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$.
Correct Answer: $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
Note:
The logarithmic function is defined for positive values.
Use the property of logarithm;
$\Rightarrow$${e^{\ln (x)}} = x$
Use the property of logarithm;
$\Rightarrow$ ${e^{\ln (x)}} = x$
Logarithmic function and exponential function are the inverse function.
Complete step-by-step answer:
We are asked to find the solution set of $\ln (5 - 7x) \leqslant 1$.
Remove the logarithm by taking exponential both sides of the inequality $\ln (5 - 7x) \leqslant 1$.
$\Rightarrow$$(5 - 7x) \leqslant e$
Logarithmic function and exponential function are the inverse function.
$\Rightarrow$$5 - e \leqslant 7x$
Divide both the sides by $7$.
$\Rightarrow$\[\dfrac{{5 - e}}{7} \leqslant \dfrac{{7x}}{7}\]
$\Rightarrow$\[ \Rightarrow \dfrac{{5 - e}}{7} \leqslant x \ldots (1)\]
All the solutions of $x$ greater than \[\dfrac{{5 - e}}{7}\].
Logarithmic function is defined for positive values.
$\Rightarrow$$5 - 7x > 0$
$\Rightarrow$$5 > 7x$
$\Rightarrow$$\dfrac{5}{7} > x \ldots (2)$
From the inequalities $(1)$ and $(2)$.
$\Rightarrow$$\dfrac{{5 - e}}{7} < x < \dfrac{5}{7}$
The solution set of $\ln (5 - 7x) \leqslant 1$ is $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$.
Correct Answer: $\left[ {\dfrac{{5 - e}}{7},\dfrac{5}{7}} \right)$
Note:
The logarithmic function is defined for positive values.
Use the property of logarithm;
$\Rightarrow$${e^{\ln (x)}} = x$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
