
The sides of a triangle are 25, 39, 40, the diameter of circumscribed circle is:
(a) $\dfrac{{133}}{3}$
(b) $\dfrac{{125}}{3}$
(c) 42
(d) 41 (e) 40
Answer
595.8k+ views
Hint: we should know the formula to find the radius of the circle circumscribing a triangle at sides a, b, c, i.e,
\[R = \dfrac{{abc}}{{\sqrt {\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {c + a - b} \right)\left( {a + b - c} \right)} }}\]
Complete step by step solution:
First we need to find the radius of the circle circumscribing the triangle.
We know that a, b, c is 25, 39, 40 respectively on the sides of the triangle.
Using the above formulae, we get
$R = \dfrac{{25 \times 39 \times 40}}{{\sqrt {\left( {25 + 39 + 40} \right)\left( {39 + 40 - 25} \right).\left( {39 + 25 - 40} \right)\left( {25 + 40 - 39} \right)} }}$
$ = \dfrac{{25 \times 39 \times 40}}{{\sqrt {\left( {104} \right) \times 54 \times 24 \times 26} }}$
$ = \dfrac{{25 \times 39 \times 40}}{{\sqrt {8 \times 13 \times 2 \times 9 \times 3 \times 8 \times 3 \times 13 \times 2} }}$
$ = \dfrac{{25 \times 39 \times 40}}{{8 \times 13 \times 2 \times 9}} = \dfrac{{125}}{6}$
Now diameter is twice the radius
$Therefore, $ $D = 2R = \dfrac{{2 \times 125}}{6} = 125$
$Therefore, $ Diameter $ = \dfrac{{125}}{3}$
Note: The above formulae can be derived using the solution of triangle and heron’s formula. It will be helpful if you know the formulae beforehand.
Proof:
By using extended sine rule i.e.,
$\dfrac{a}{{{\text{Sin}}{\text{A}}}} = \dfrac{b}{{{\text{SinB}}}} = \dfrac{c}{{Sinc}} = 2R$
And using formulae from solution of triangle area of triangle $\left( \Delta \right)$ is
$\Delta = \dfrac{1}{2}ab\;Sinc$
$Therefore, \dfrac{c}{{{\text{Sinc}}}} = 2R$
${\text{Sinc}} = \dfrac{c}{{2R}}$
Substituting it to area equation we get
$\Delta = \dfrac{1}{2}ab\dfrac{c}{{2R}} = \dfrac{{abc}}{{4R}}$
Now using hess's formulae
\[\Delta = \sqrt {s\left( {s - a} \right)\left( {s - 6} \right)\left( {s - 6} \right)} \] where $s = \dfrac{{a + b + c}}{2}$
equating both $\Delta $ values we get
\[\dfrac{{abc}}{{4R}} = \sqrt {\left( {\dfrac{{a + b + c}}{2}} \right)\left( {\dfrac{{a + b + c - a}}{2}} \right)\left( {\dfrac{{a + b + c - b}}{2}} \right)\left( {\dfrac{{a + b + c - c}}{2}} \right)} \]
$R = \dfrac{{abc}}{{4 \times \dfrac{{\sqrt {\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {a + c - b} \right)\left( {a + b - c} \right)} }}{4}}}$
\[R = \dfrac{{abc}}{{\sqrt {\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {a + c - b} \right)\left( {a + b - c} \right)} }}\]
\[R = \dfrac{{abc}}{{\sqrt {\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {c + a - b} \right)\left( {a + b - c} \right)} }}\]
Complete step by step solution:
First we need to find the radius of the circle circumscribing the triangle.
We know that a, b, c is 25, 39, 40 respectively on the sides of the triangle.
Using the above formulae, we get
$R = \dfrac{{25 \times 39 \times 40}}{{\sqrt {\left( {25 + 39 + 40} \right)\left( {39 + 40 - 25} \right).\left( {39 + 25 - 40} \right)\left( {25 + 40 - 39} \right)} }}$
$ = \dfrac{{25 \times 39 \times 40}}{{\sqrt {\left( {104} \right) \times 54 \times 24 \times 26} }}$
$ = \dfrac{{25 \times 39 \times 40}}{{\sqrt {8 \times 13 \times 2 \times 9 \times 3 \times 8 \times 3 \times 13 \times 2} }}$
$ = \dfrac{{25 \times 39 \times 40}}{{8 \times 13 \times 2 \times 9}} = \dfrac{{125}}{6}$
Now diameter is twice the radius
$Therefore, $ $D = 2R = \dfrac{{2 \times 125}}{6} = 125$
$Therefore, $ Diameter $ = \dfrac{{125}}{3}$
Note: The above formulae can be derived using the solution of triangle and heron’s formula. It will be helpful if you know the formulae beforehand.
Proof:
By using extended sine rule i.e.,
$\dfrac{a}{{{\text{Sin}}{\text{A}}}} = \dfrac{b}{{{\text{SinB}}}} = \dfrac{c}{{Sinc}} = 2R$
And using formulae from solution of triangle area of triangle $\left( \Delta \right)$ is
$\Delta = \dfrac{1}{2}ab\;Sinc$
$Therefore, \dfrac{c}{{{\text{Sinc}}}} = 2R$
${\text{Sinc}} = \dfrac{c}{{2R}}$
Substituting it to area equation we get
$\Delta = \dfrac{1}{2}ab\dfrac{c}{{2R}} = \dfrac{{abc}}{{4R}}$
Now using hess's formulae
\[\Delta = \sqrt {s\left( {s - a} \right)\left( {s - 6} \right)\left( {s - 6} \right)} \] where $s = \dfrac{{a + b + c}}{2}$
equating both $\Delta $ values we get
\[\dfrac{{abc}}{{4R}} = \sqrt {\left( {\dfrac{{a + b + c}}{2}} \right)\left( {\dfrac{{a + b + c - a}}{2}} \right)\left( {\dfrac{{a + b + c - b}}{2}} \right)\left( {\dfrac{{a + b + c - c}}{2}} \right)} \]
$R = \dfrac{{abc}}{{4 \times \dfrac{{\sqrt {\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {a + c - b} \right)\left( {a + b - c} \right)} }}{4}}}$
\[R = \dfrac{{abc}}{{\sqrt {\left( {a + b + c} \right)\left( {b + c - a} \right)\left( {a + c - b} \right)\left( {a + b - c} \right)} }}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

