Answer
Verified
448.5k+ views
Hint: Since, the sides of the triangle are in A.P, let $d$ be the common difference of A.P and rewrite the sides as $a = b - d$, $b$ and $c = b + d$. Then, substitute the values in the given equation $\cos \alpha = \dfrac{a}{{b + c}}$, $\cos \beta = \dfrac{b}{{c + a}}$, $\cos \gamma = \dfrac{c}{{a + b}}$ and simplify using the trigonometric formulas. Further, find the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let $d$ be the common difference of A.P
Then, the sides of A.P. can be written as $a = b - d$, $b$ and $c = b + d$
Also, we are given than $\cos \alpha = \dfrac{a}{{b + c}}$
Substitute the value of $a,b,c$ in the equation.
$\cos \alpha = \dfrac{{b - d}}{{b + b + d}}$
$ \Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}}$ (1)
Similarly, we will write the value of $\cos \beta = \dfrac{b}{{c + a}}$
Hence, we get,
$
\cos \beta = \dfrac{b}{{b + d + b - d}} \\
\Rightarrow \cos \beta = \dfrac{b}{{2b}} \\
\Rightarrow \cos \beta = \dfrac{1}{2} \\
\Rightarrow \beta = {60^ \circ } \\
$
Now, we will write the value of $\cos \gamma = \dfrac{c}{{a + b}}$
$
\cos \gamma = \dfrac{c}{{a + b}} \\
\Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\
$
$ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}}$ (2)
Now, we know that $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
Therefore from equation (1), we have,
$
\cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
$
We will solve the above equation to find the value of ${\tan ^2}\dfrac{\alpha }{2}$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\
$
Similarly, we will find the value of ${\tan ^2}\dfrac{\gamma }{2}$ from equation (2)
$
\Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
\Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\
$
We will now substitute the values of ${\tan ^2}\dfrac{\alpha }{2}$ and ${\tan ^2}\dfrac{\gamma }{2}$ in the expression ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$
$
\dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\
\Rightarrow \dfrac{{2b}}{{3b}} \\
\Rightarrow \dfrac{2}{3} \\
$
Hence, the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$ is $\dfrac{2}{3}$.
Thus, option D is correct.
Note: Here, we have used the formula of $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, where the angle gets half. Similarly, we have $\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x$, $\cos \left( {2x} \right) = 1 - 2{\sin ^2}x$ and $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$. Use the formula according to the condition in the question.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let $d$ be the common difference of A.P
Then, the sides of A.P. can be written as $a = b - d$, $b$ and $c = b + d$
Also, we are given than $\cos \alpha = \dfrac{a}{{b + c}}$
Substitute the value of $a,b,c$ in the equation.
$\cos \alpha = \dfrac{{b - d}}{{b + b + d}}$
$ \Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}}$ (1)
Similarly, we will write the value of $\cos \beta = \dfrac{b}{{c + a}}$
Hence, we get,
$
\cos \beta = \dfrac{b}{{b + d + b - d}} \\
\Rightarrow \cos \beta = \dfrac{b}{{2b}} \\
\Rightarrow \cos \beta = \dfrac{1}{2} \\
\Rightarrow \beta = {60^ \circ } \\
$
Now, we will write the value of $\cos \gamma = \dfrac{c}{{a + b}}$
$
\cos \gamma = \dfrac{c}{{a + b}} \\
\Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\
$
$ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}}$ (2)
Now, we know that $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
Therefore from equation (1), we have,
$
\cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
$
We will solve the above equation to find the value of ${\tan ^2}\dfrac{\alpha }{2}$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\
$
Similarly, we will find the value of ${\tan ^2}\dfrac{\gamma }{2}$ from equation (2)
$
\Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
\Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\
$
We will now substitute the values of ${\tan ^2}\dfrac{\alpha }{2}$ and ${\tan ^2}\dfrac{\gamma }{2}$ in the expression ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$
$
\dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\
\Rightarrow \dfrac{{2b}}{{3b}} \\
\Rightarrow \dfrac{2}{3} \\
$
Hence, the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$ is $\dfrac{2}{3}$.
Thus, option D is correct.
Note: Here, we have used the formula of $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, where the angle gets half. Similarly, we have $\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x$, $\cos \left( {2x} \right) = 1 - 2{\sin ^2}x$ and $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$. Use the formula according to the condition in the question.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths