
The sides $a,b,c$ of $\vartriangle ABC$, are in A.P. If $\cos \alpha = \dfrac{a}{{b + c}}$, $\cos \beta = \dfrac{b}{{c + a}}$, $\cos \gamma = \dfrac{c}{{a + b}}$ then ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2} = $
A.1
B.$\dfrac{1}{2}$
C.$\dfrac{1}{3}$
D.$\dfrac{2}{3}$
Answer
593.4k+ views
Hint: Since, the sides of the triangle are in A.P, let $d$ be the common difference of A.P and rewrite the sides as $a = b - d$, $b$ and $c = b + d$. Then, substitute the values in the given equation $\cos \alpha = \dfrac{a}{{b + c}}$, $\cos \beta = \dfrac{b}{{c + a}}$, $\cos \gamma = \dfrac{c}{{a + b}}$ and simplify using the trigonometric formulas. Further, find the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let $d$ be the common difference of A.P
Then, the sides of A.P. can be written as $a = b - d$, $b$ and $c = b + d$
Also, we are given than $\cos \alpha = \dfrac{a}{{b + c}}$
Substitute the value of $a,b,c$ in the equation.
$\cos \alpha = \dfrac{{b - d}}{{b + b + d}}$
$ \Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}}$ (1)
Similarly, we will write the value of $\cos \beta = \dfrac{b}{{c + a}}$
Hence, we get,
$
\cos \beta = \dfrac{b}{{b + d + b - d}} \\
\Rightarrow \cos \beta = \dfrac{b}{{2b}} \\
\Rightarrow \cos \beta = \dfrac{1}{2} \\
\Rightarrow \beta = {60^ \circ } \\
$
Now, we will write the value of $\cos \gamma = \dfrac{c}{{a + b}}$
$
\cos \gamma = \dfrac{c}{{a + b}} \\
\Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\
$
$ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}}$ (2)
Now, we know that $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
Therefore from equation (1), we have,
$
\cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
$
We will solve the above equation to find the value of ${\tan ^2}\dfrac{\alpha }{2}$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\
$
Similarly, we will find the value of ${\tan ^2}\dfrac{\gamma }{2}$ from equation (2)
$
\Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
\Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\
$
We will now substitute the values of ${\tan ^2}\dfrac{\alpha }{2}$ and ${\tan ^2}\dfrac{\gamma }{2}$ in the expression ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$
$
\dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\
\Rightarrow \dfrac{{2b}}{{3b}} \\
\Rightarrow \dfrac{2}{3} \\
$
Hence, the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$ is $\dfrac{2}{3}$.
Thus, option D is correct.
Note: Here, we have used the formula of $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, where the angle gets half. Similarly, we have $\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x$, $\cos \left( {2x} \right) = 1 - 2{\sin ^2}x$ and $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$. Use the formula according to the condition in the question.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let $d$ be the common difference of A.P
Then, the sides of A.P. can be written as $a = b - d$, $b$ and $c = b + d$
Also, we are given than $\cos \alpha = \dfrac{a}{{b + c}}$
Substitute the value of $a,b,c$ in the equation.
$\cos \alpha = \dfrac{{b - d}}{{b + b + d}}$
$ \Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}}$ (1)
Similarly, we will write the value of $\cos \beta = \dfrac{b}{{c + a}}$
Hence, we get,
$
\cos \beta = \dfrac{b}{{b + d + b - d}} \\
\Rightarrow \cos \beta = \dfrac{b}{{2b}} \\
\Rightarrow \cos \beta = \dfrac{1}{2} \\
\Rightarrow \beta = {60^ \circ } \\
$
Now, we will write the value of $\cos \gamma = \dfrac{c}{{a + b}}$
$
\cos \gamma = \dfrac{c}{{a + b}} \\
\Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\
$
$ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}}$ (2)
Now, we know that $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
Therefore from equation (1), we have,
$
\cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
$
We will solve the above equation to find the value of ${\tan ^2}\dfrac{\alpha }{2}$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\
$
Similarly, we will find the value of ${\tan ^2}\dfrac{\gamma }{2}$ from equation (2)
$
\Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
\Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\
$
We will now substitute the values of ${\tan ^2}\dfrac{\alpha }{2}$ and ${\tan ^2}\dfrac{\gamma }{2}$ in the expression ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$
$
\dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\
\Rightarrow \dfrac{{2b}}{{3b}} \\
\Rightarrow \dfrac{2}{3} \\
$
Hence, the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$ is $\dfrac{2}{3}$.
Thus, option D is correct.
Note: Here, we have used the formula of $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, where the angle gets half. Similarly, we have $\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x$, $\cos \left( {2x} \right) = 1 - 2{\sin ^2}x$ and $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$. Use the formula according to the condition in the question.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

