The sides $a,b,c$ of $\vartriangle ABC$, are in A.P. If $\cos \alpha = \dfrac{a}{{b + c}}$, $\cos \beta = \dfrac{b}{{c + a}}$, $\cos \gamma = \dfrac{c}{{a + b}}$ then ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2} = $
A.1
B.$\dfrac{1}{2}$
C.$\dfrac{1}{3}$
D.$\dfrac{2}{3}$
Answer
Verified
479.7k+ views
Hint: Since, the sides of the triangle are in A.P, let $d$ be the common difference of A.P and rewrite the sides as $a = b - d$, $b$ and $c = b + d$. Then, substitute the values in the given equation $\cos \alpha = \dfrac{a}{{b + c}}$, $\cos \beta = \dfrac{b}{{c + a}}$, $\cos \gamma = \dfrac{c}{{a + b}}$ and simplify using the trigonometric formulas. Further, find the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let $d$ be the common difference of A.P
Then, the sides of A.P. can be written as $a = b - d$, $b$ and $c = b + d$
Also, we are given than $\cos \alpha = \dfrac{a}{{b + c}}$
Substitute the value of $a,b,c$ in the equation.
$\cos \alpha = \dfrac{{b - d}}{{b + b + d}}$
$ \Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}}$ (1)
Similarly, we will write the value of $\cos \beta = \dfrac{b}{{c + a}}$
Hence, we get,
$
\cos \beta = \dfrac{b}{{b + d + b - d}} \\
\Rightarrow \cos \beta = \dfrac{b}{{2b}} \\
\Rightarrow \cos \beta = \dfrac{1}{2} \\
\Rightarrow \beta = {60^ \circ } \\
$
Now, we will write the value of $\cos \gamma = \dfrac{c}{{a + b}}$
$
\cos \gamma = \dfrac{c}{{a + b}} \\
\Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\
$
$ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}}$ (2)
Now, we know that $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
Therefore from equation (1), we have,
$
\cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
$
We will solve the above equation to find the value of ${\tan ^2}\dfrac{\alpha }{2}$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\
$
Similarly, we will find the value of ${\tan ^2}\dfrac{\gamma }{2}$ from equation (2)
$
\Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
\Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\
$
We will now substitute the values of ${\tan ^2}\dfrac{\alpha }{2}$ and ${\tan ^2}\dfrac{\gamma }{2}$ in the expression ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$
$
\dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\
\Rightarrow \dfrac{{2b}}{{3b}} \\
\Rightarrow \dfrac{2}{3} \\
$
Hence, the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$ is $\dfrac{2}{3}$.
Thus, option D is correct.
Note: Here, we have used the formula of $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, where the angle gets half. Similarly, we have $\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x$, $\cos \left( {2x} \right) = 1 - 2{\sin ^2}x$ and $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$. Use the formula according to the condition in the question.
Complete step-by-step answer:
We are given that the sides of a triangle are in A.P
Let $d$ be the common difference of A.P
Then, the sides of A.P. can be written as $a = b - d$, $b$ and $c = b + d$
Also, we are given than $\cos \alpha = \dfrac{a}{{b + c}}$
Substitute the value of $a,b,c$ in the equation.
$\cos \alpha = \dfrac{{b - d}}{{b + b + d}}$
$ \Rightarrow \cos \alpha = \dfrac{{b - d}}{{2b + d}}$ (1)
Similarly, we will write the value of $\cos \beta = \dfrac{b}{{c + a}}$
Hence, we get,
$
\cos \beta = \dfrac{b}{{b + d + b - d}} \\
\Rightarrow \cos \beta = \dfrac{b}{{2b}} \\
\Rightarrow \cos \beta = \dfrac{1}{2} \\
\Rightarrow \beta = {60^ \circ } \\
$
Now, we will write the value of $\cos \gamma = \dfrac{c}{{a + b}}$
$
\cos \gamma = \dfrac{c}{{a + b}} \\
\Rightarrow \cos \gamma = \dfrac{{b + d}}{{b - d + b}} \\
$
$ \Rightarrow \cos \gamma = \dfrac{{b + d}}{{2b - d}}$ (2)
Now, we know that $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$
Therefore from equation (1), we have,
$
\cos \alpha = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b - d}}{{2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
$
We will solve the above equation to find the value of ${\tan ^2}\dfrac{\alpha }{2}$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b - d - 2b - d}}{{b - d + 2b + d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\alpha }{2} - 1 - {{\tan }^2}\dfrac{\alpha }{2}}}{{1 - {{\tan }^2}\dfrac{\alpha }{2} + 1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{ - b - 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\alpha }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\alpha }{2} = \dfrac{{2d + b}}{{3b}} \\
$
Similarly, we will find the value of ${\tan ^2}\dfrac{\gamma }{2}$ from equation (2)
$
\Rightarrow \cos \gamma = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\alpha }{2}}} \\
\Rightarrow \dfrac{{b + d}}{{2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
$
Use componendo and dividendo rules to simplify the equation.
$
\dfrac{{b + d - 2b + d}}{{b + d + 2b - d}} = \dfrac{{1 - {{\tan }^2}\dfrac{\gamma }{2} - 1 - {{\tan }^2}\dfrac{\gamma }{2}}}{{1 - {{\tan }^2}\dfrac{\gamma }{2} + 1 + {{\tan }^2}\dfrac{\gamma }{2}}} \\
\Rightarrow \dfrac{{ - b + 2d}}{{3b}} = \dfrac{{ - 2{{\tan }^2}\dfrac{\gamma }{2}}}{2} \\
\Rightarrow {\tan ^2}\dfrac{\gamma }{2} = \dfrac{{b - 2d}}{{3b}} \\
$
We will now substitute the values of ${\tan ^2}\dfrac{\alpha }{2}$ and ${\tan ^2}\dfrac{\gamma }{2}$ in the expression ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$
$
\dfrac{{2d + b}}{{3b}} + \dfrac{{b - 2d}}{{3b}} = \dfrac{{2d + b + b - 2d}}{{3b}} \\
\Rightarrow \dfrac{{2b}}{{3b}} \\
\Rightarrow \dfrac{2}{3} \\
$
Hence, the value of ${\tan ^2}\dfrac{\alpha }{2} + {\tan ^2}\dfrac{\gamma }{2}$ is $\dfrac{2}{3}$.
Thus, option D is correct.
Note: Here, we have used the formula of $\cos \left( {2x} \right) = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}$, where the angle gets half. Similarly, we have $\cos \left( {2x} \right) = {\cos ^2}x - {\sin ^2}x$, $\cos \left( {2x} \right) = 1 - 2{\sin ^2}x$ and $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$. Use the formula according to the condition in the question.
Recently Updated Pages
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Chemistry: Engaging Questions & Answers for Success
Master Class 11 Biology: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE