
The sides \[\text{AB}\] and \[\text{AC}\] of a \[\vartriangle \text{ABC}\] are produced to \[\text{P}\] and \[\text{Q}\] respectively. If the bisector of the angles \[\angle \text{PBC}\] and \[\angle \text{QCB}\] intersect at \[\text{O}\], then show that \[\angle \text{BOC}={{90}^{\circ }}-\dfrac{1}{2}\angle \text{A}\].
Answer
513.9k+ views
Hint: In this question, we will use fact that the angle bisector of \[\angle \text{PBC}\] and \[\angle \text{QCB}\] divides the angle into two equal parts. Now using the exterior angle theorem for triangle which states that if a side of a triangle is extended, then the resultant angle would be equal to the sum of the two opposite interior angles of the given triangle. Thus we will get \[\angle \text{PBC}=\angle \text{A}+\angle \text{ACB}\] and \[\angle \text{QCB}=\angle \text{A}+\angle \text{ABC}\]. Then we will use the angle sum property of the triangle \[\vartriangle \text{BOC}\] and then do some substitutions to get the desired result.
Complete step-by-step answer:
We are given a triangle \[\vartriangle \text{ABC}\].
The side \[\text{AB}\] of \[\vartriangle \text{ABC}\] is produced to \[\text{P}\] and the side \[\text{AC}\] of \[\vartriangle \text{ABC}\] is produced to \[\text{Q}\] as shown in the figure given below.
Let us suppose \[\text{BO}\] bisects \[\angle \text{PBC}\].
Thus we have
\[\angle \text{OBC}=\dfrac{1}{2}\angle \text{PBC}....................\text{(1)}\]
Again since \[\text{CO}\] bisects \[\angle \text{QCB}\] we have
\[\angle \text{OCB}=\dfrac{1}{2}\angle \text{QCB}............................\text{(2)}\]
Now the Exterior angle theorem states that if a side of a triangle is extended, then the resultant angle would be equal to the sum of the two opposite interior angles of the given triangle.
Using this property, we get that
\[\angle \text{PBC}=\angle \text{A}+\angle \text{ACB}.............................\text{(3)}\]
and
\[\angle \text{QCB}=\angle \text{A}+\angle \text{ABC}................\text{(4)}\]
Now using the angle sum property of a triangle in \[\vartriangle \text{BOC}\] which states that the sum of the three interior angles of a triangle if equal to \[{{180}^{\circ }}\], we get
\[\angle \text{BOC}+\angle \text{OBC}+\angle \text{OCB}={{180}^{\circ }}\]
\[\Rightarrow \angle \text{BOC}={{180}^{\circ }}-\left( \angle \text{OBC+}\angle \text{OCB} \right).................(5)\]
Now using equation (1) and equation (2), we get
\[\begin{align}
& \angle \text{OBC}=\dfrac{1}{2}\angle \text{PBC} \\
& \text{=}\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ACB} \right)............(6)
\end{align}\]
Now using equation (2) and equation (3), we get
\[\begin{align}
& \angle \text{OCB}=\dfrac{1}{2}\angle \text{QCB} \\
& \text{=}\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ABC} \right).............(7)
\end{align}\]
We will now substitute the values of equation (6) and equation (7) in equation (5).then we will get
\[\begin{align}
& \angle \text{BOC}={{180}^{\circ }}-\left( \angle \text{OBC+}\angle \text{OCB} \right) \\
& ={{180}^{\circ }}-\left( \dfrac{1}{2}\left( \angle \text{A}+\angle \text{ACB} \right)\text{+}\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ABC} \right) \right) \\
& ={{180}^{\circ }}-\left( \dfrac{1}{2}\left( \angle \text{A} \right)+\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ABC}+\angle \text{ACB} \right) \right)
\end{align}\]
Here in the above equation, we have the sum of the angle of \[\vartriangle \text{ABC}\] is \[{{180}^{\circ }}\] using the angle sum property.
Thus we get
\[\begin{align}
& \angle \text{BOC}={{180}^{\circ }}-\left( \dfrac{1}{2}\left( \angle \text{A} \right)+\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ABC}+\angle \text{ACB} \right) \right) \\
& ={{180}^{\circ }}-\left( \dfrac{1}{2}\left( \angle \text{A} \right)+\dfrac{1}{2}\left( {{180}^{\circ }} \right) \right) \\
& ={{180}^{\circ }}-\dfrac{1}{2}\angle \text{A}-\dfrac{{{180}^{\circ }}}{2} \\
& ={{180}^{\circ }}-{{90}^{\circ }}-\dfrac{1}{2}\angle \text{A} \\
& \text{=9}{{0}^{\circ }}-\dfrac{1}{2}\angle \text{A}
\end{align}\]
Hence the statement is proved.
Note: In this problem, trivial calculation mistakes can be made. So take care of that. Use the exterior angle property of triangles carefully while choosing the sum of the interior angles of the triangle.
Complete step-by-step answer:
We are given a triangle \[\vartriangle \text{ABC}\].
The side \[\text{AB}\] of \[\vartriangle \text{ABC}\] is produced to \[\text{P}\] and the side \[\text{AC}\] of \[\vartriangle \text{ABC}\] is produced to \[\text{Q}\] as shown in the figure given below.

Let us suppose \[\text{BO}\] bisects \[\angle \text{PBC}\].
Thus we have
\[\angle \text{OBC}=\dfrac{1}{2}\angle \text{PBC}....................\text{(1)}\]
Again since \[\text{CO}\] bisects \[\angle \text{QCB}\] we have
\[\angle \text{OCB}=\dfrac{1}{2}\angle \text{QCB}............................\text{(2)}\]
Now the Exterior angle theorem states that if a side of a triangle is extended, then the resultant angle would be equal to the sum of the two opposite interior angles of the given triangle.
Using this property, we get that
\[\angle \text{PBC}=\angle \text{A}+\angle \text{ACB}.............................\text{(3)}\]
and
\[\angle \text{QCB}=\angle \text{A}+\angle \text{ABC}................\text{(4)}\]
Now using the angle sum property of a triangle in \[\vartriangle \text{BOC}\] which states that the sum of the three interior angles of a triangle if equal to \[{{180}^{\circ }}\], we get
\[\angle \text{BOC}+\angle \text{OBC}+\angle \text{OCB}={{180}^{\circ }}\]
\[\Rightarrow \angle \text{BOC}={{180}^{\circ }}-\left( \angle \text{OBC+}\angle \text{OCB} \right).................(5)\]
Now using equation (1) and equation (2), we get
\[\begin{align}
& \angle \text{OBC}=\dfrac{1}{2}\angle \text{PBC} \\
& \text{=}\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ACB} \right)............(6)
\end{align}\]
Now using equation (2) and equation (3), we get
\[\begin{align}
& \angle \text{OCB}=\dfrac{1}{2}\angle \text{QCB} \\
& \text{=}\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ABC} \right).............(7)
\end{align}\]
We will now substitute the values of equation (6) and equation (7) in equation (5).then we will get
\[\begin{align}
& \angle \text{BOC}={{180}^{\circ }}-\left( \angle \text{OBC+}\angle \text{OCB} \right) \\
& ={{180}^{\circ }}-\left( \dfrac{1}{2}\left( \angle \text{A}+\angle \text{ACB} \right)\text{+}\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ABC} \right) \right) \\
& ={{180}^{\circ }}-\left( \dfrac{1}{2}\left( \angle \text{A} \right)+\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ABC}+\angle \text{ACB} \right) \right)
\end{align}\]
Here in the above equation, we have the sum of the angle of \[\vartriangle \text{ABC}\] is \[{{180}^{\circ }}\] using the angle sum property.
Thus we get
\[\begin{align}
& \angle \text{BOC}={{180}^{\circ }}-\left( \dfrac{1}{2}\left( \angle \text{A} \right)+\dfrac{1}{2}\left( \angle \text{A}+\angle \text{ABC}+\angle \text{ACB} \right) \right) \\
& ={{180}^{\circ }}-\left( \dfrac{1}{2}\left( \angle \text{A} \right)+\dfrac{1}{2}\left( {{180}^{\circ }} \right) \right) \\
& ={{180}^{\circ }}-\dfrac{1}{2}\angle \text{A}-\dfrac{{{180}^{\circ }}}{2} \\
& ={{180}^{\circ }}-{{90}^{\circ }}-\dfrac{1}{2}\angle \text{A} \\
& \text{=9}{{0}^{\circ }}-\dfrac{1}{2}\angle \text{A}
\end{align}\]
Hence the statement is proved.
Note: In this problem, trivial calculation mistakes can be made. So take care of that. Use the exterior angle property of triangles carefully while choosing the sum of the interior angles of the triangle.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
