
The S.I unit of permittivity of free space \[({{\varepsilon }_{0}})\] is:
A. \[C{{N}^{-1}}-{{m}^{-1}}\]
B. \[N{{m}^{-2}}{{C}^{-2}}\]
C. \[{{C}^{2}}{{N}^{-2}}{{m}^{-2}}\]
D. \[{{C}^{2}}{{N}^{-1}}{{m}^{-2}}\]
Answer
592.2k+ views
Hint: Permittivity is the resistance to the electric field. Generally, permittivity of free space is represented by \[\text{Farad/meter}\]. Here the options are in the terms of charge, force and length. To find that unit, we can use Coulomb’s law. Coulomb’s law can be written as, \[\text{F=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi {{\varepsilon }_{0}}{{r}^{2}}}\], where \[{{q}_{1}}\] and \[{{q}_{2}}\] are two charges and r is the distance between two charges.
Complete Step by Step Answer:
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum or free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of \[8.85\times {{10}^{-12}}\text{Farad/meter}\].
According to Coulomb’s law, the force between two charges can be written as,
\[\text{F=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi {{\varepsilon }_{0}}{{r}^{2}}}\], where \[{{q}_{1}}\] and \[{{q}_{2}}\]are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
\[{{\varepsilon }_{0}}\text{=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi F{{r}^{2}}}\]
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
\[\Rightarrow \dfrac{C.C}{N.{{m}^{2}}}\]
\[\Rightarrow {{C}^{2}}{{N}^{-1}}{{m}^{-2}}\]
So, the correct option is D.
Additional Information:
According to electrostatics, this unit can be further modified and can be written as Farad per meter.
Capacitance of a capacitor can be written as,
\[C=\dfrac{A{{\varepsilon }_{0}}}{d}\], where A is the area of the plates of the capacitor and d is the distance between the capacitor.
\[{{\varepsilon }_{0}}=\dfrac{Cd}{A}\]
So, the unit of electrical permittivity of free space will be,
\[\Rightarrow \dfrac{\text{Farad}\times m}{{{m}^{2}}}\]
So \[\text{Farad/meter}\] can also be used as the unit of electrical permittivity of free space.
The mathematical expression of permittivity is,
\[\text{Permittivity = }\dfrac{\text{Electric displacement}}{\text{Electric field density}}\]
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. It doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Complete Step by Step Answer:
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum or free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of \[8.85\times {{10}^{-12}}\text{Farad/meter}\].
According to Coulomb’s law, the force between two charges can be written as,
\[\text{F=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi {{\varepsilon }_{0}}{{r}^{2}}}\], where \[{{q}_{1}}\] and \[{{q}_{2}}\]are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
\[{{\varepsilon }_{0}}\text{=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi F{{r}^{2}}}\]
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
\[\Rightarrow \dfrac{C.C}{N.{{m}^{2}}}\]
\[\Rightarrow {{C}^{2}}{{N}^{-1}}{{m}^{-2}}\]
So, the correct option is D.
Additional Information:
According to electrostatics, this unit can be further modified and can be written as Farad per meter.
Capacitance of a capacitor can be written as,
\[C=\dfrac{A{{\varepsilon }_{0}}}{d}\], where A is the area of the plates of the capacitor and d is the distance between the capacitor.
\[{{\varepsilon }_{0}}=\dfrac{Cd}{A}\]
So, the unit of electrical permittivity of free space will be,
\[\Rightarrow \dfrac{\text{Farad}\times m}{{{m}^{2}}}\]
So \[\text{Farad/meter}\] can also be used as the unit of electrical permittivity of free space.
The mathematical expression of permittivity is,
\[\text{Permittivity = }\dfrac{\text{Electric displacement}}{\text{Electric field density}}\]
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. It doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

