
The shortest distance between the point(1.5, 0) and the curve $\mathrm y=\sqrt{\mathrm x}$.
Answer
607.8k+ views
Hint: To solve this, we will assume a point on the curve in parametric form and then find its distance from the point(1.5, 0). To find the shortest distance, we will differentiate the distance and equate it to 0, so that we get the minima.
Complete step-by-step answer:
Let y = t, so according to the equation x=$t^2$.
Let a point P($t^2$, t) be a point on the curve. The distance between the point P and (1.5, 0) is-
$\mathrm D=\sqrt{\left({\mathrm x}_2-{\mathrm x}_1\right)^2+\left({\mathrm y}_2-{\mathrm y}_1\right)^2}\\\mathrm D=\sqrt{\left(\mathrm t^2-\dfrac32\right)^2+\left(\mathrm t-0\right)^2}\\\\\\$
When D is minimum, $D^2$ = k is also minimum. So we will differentiate k with respect to t-
$\dfrac{\operatorname d\mathrm k}{\operatorname d\mathrm t}=2\left(\mathrm t^2-\dfrac32\right)\left(2\mathrm t\right)+2\mathrm t=0\\2\mathrm t\left(2\mathrm t^2-\dfrac32+1\right)=0\\2\mathrm t\left(2\mathrm t^2-\dfrac12\right)=0\\\mathrm t=0,\pm\dfrac12$
Substituting t=0 in D-
$\mathrm D=\sqrt{\left(0-\dfrac32\right)^2+0}\\\mathrm D=\dfrac32$
Substituting t=½ in D-
$D=\sqrt{\left(\dfrac12-\dfrac32\right)^2+\left(\dfrac12\right)^2}\\D=\;\sqrt{1+\dfrac14}=\dfrac{\sqrt5}2$
Substituting t= -½ in D-
$\mathrm D=\sqrt{\left(-\dfrac12-\dfrac32\right)^2+\left(-\dfrac12\right)^2}\\\mathrm D=\sqrt{4+\dfrac14}=\sqrt{\dfrac94}=\dfrac32$
Clearly, the shortest distance between the point and the curve is-
$\mathrm D=\dfrac{\sqrt5}2\;\mathrm{units}$
This is the required answer.
Note: Instead of checking every possible value of t to find the shortest distance, one can differentiate k again to find the value of t. Also, one common mistake is that students assume that the shortest distance is at t=0, which is incorrect.
Complete step-by-step answer:
Let y = t, so according to the equation x=$t^2$.
Let a point P($t^2$, t) be a point on the curve. The distance between the point P and (1.5, 0) is-
$\mathrm D=\sqrt{\left({\mathrm x}_2-{\mathrm x}_1\right)^2+\left({\mathrm y}_2-{\mathrm y}_1\right)^2}\\\mathrm D=\sqrt{\left(\mathrm t^2-\dfrac32\right)^2+\left(\mathrm t-0\right)^2}\\\\\\$
When D is minimum, $D^2$ = k is also minimum. So we will differentiate k with respect to t-
$\dfrac{\operatorname d\mathrm k}{\operatorname d\mathrm t}=2\left(\mathrm t^2-\dfrac32\right)\left(2\mathrm t\right)+2\mathrm t=0\\2\mathrm t\left(2\mathrm t^2-\dfrac32+1\right)=0\\2\mathrm t\left(2\mathrm t^2-\dfrac12\right)=0\\\mathrm t=0,\pm\dfrac12$
Substituting t=0 in D-
$\mathrm D=\sqrt{\left(0-\dfrac32\right)^2+0}\\\mathrm D=\dfrac32$
Substituting t=½ in D-
$D=\sqrt{\left(\dfrac12-\dfrac32\right)^2+\left(\dfrac12\right)^2}\\D=\;\sqrt{1+\dfrac14}=\dfrac{\sqrt5}2$
Substituting t= -½ in D-
$\mathrm D=\sqrt{\left(-\dfrac12-\dfrac32\right)^2+\left(-\dfrac12\right)^2}\\\mathrm D=\sqrt{4+\dfrac14}=\sqrt{\dfrac94}=\dfrac32$
Clearly, the shortest distance between the point and the curve is-
$\mathrm D=\dfrac{\sqrt5}2\;\mathrm{units}$
This is the required answer.
Note: Instead of checking every possible value of t to find the shortest distance, one can differentiate k again to find the value of t. Also, one common mistake is that students assume that the shortest distance is at t=0, which is incorrect.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

