
The set of solutions for the equation $ {\log _{10}}\left( {{a^2} - 15a} \right) = 2 $ consists of?
A) Two integers
B) One integer and one fraction
C) Two irrational numbers
D) Two non-real numbers
E) No numbers, that is, set is empty
Answer
570k+ views
Hint: We can solve the equation by opening the log and then forming the quadratic equation. Then we can find the solutions to quadratic equations by factorizing or by using the quadratic formula.
Formula used-
Formulae used are
$ {\log _a}y = x \Leftrightarrow {a^x} = y $ where $ a \ne 0,1,y \ne 0 $
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ for a quadratic equation $ a{x^2} + bx + c = 0 $ where $ a \ne 0 $
Complete step-by-step answer:
According to the question,
$ {\log _{10}}\left( {{a^2} - 15a} \right) = 2 $
We can remove the log and convert the equation to simple algebra by
using, $ {\log _a}y = x \Leftrightarrow {a^x} = y $ we can see
$
{a^2} - 15a = {10^2} \\
\Rightarrow {a^2} - 15a - 100 = 0 \\
$
Now that we have got a quadratic equation. We can find the roots by any method.
Using the quadratic formula, $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
$
a = \dfrac{{ - \left( { - 15} \right) \pm \sqrt {{{\left( { - 15} \right)}^2} - 4\times1\times\left( { - 100} \right)} }}{{2.1}} \\
\Rightarrow a = \dfrac{{15 \pm \sqrt {225 + 400} }}{2} \\
\Rightarrow a = \dfrac{{15 \pm \sqrt {625} }}{2} = \dfrac{{15 \pm 25}}{2} \;
\Rightarrow a = 20, - 5 \;
$
So here we can see that the solution set for the initial equation is $ (20,-5) $ and the set consists of two integers. Therefore, the correct answer is A) Two integers.
So, the correct answer is “Option A”.
Note: We can also find the roots using factorization as following
$
{a^2} - 15a - 100 = 0 \\
\Rightarrow {a^2} - 20a + 5a - 100 = 0 \\
\Rightarrow a\left( {a - 20} \right) + 5\left( {a - 20} \right) = 0 \\
\Rightarrow \left( {a - 20} \right)\left( {a + 5} \right) = 0 \\
\Rightarrow a = 20, - 5 \;
$
Formula used-
Formulae used are
$ {\log _a}y = x \Leftrightarrow {a^x} = y $ where $ a \ne 0,1,y \ne 0 $
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ for a quadratic equation $ a{x^2} + bx + c = 0 $ where $ a \ne 0 $
Complete step-by-step answer:
According to the question,
$ {\log _{10}}\left( {{a^2} - 15a} \right) = 2 $
We can remove the log and convert the equation to simple algebra by
using, $ {\log _a}y = x \Leftrightarrow {a^x} = y $ we can see
$
{a^2} - 15a = {10^2} \\
\Rightarrow {a^2} - 15a - 100 = 0 \\
$
Now that we have got a quadratic equation. We can find the roots by any method.
Using the quadratic formula, $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
$
a = \dfrac{{ - \left( { - 15} \right) \pm \sqrt {{{\left( { - 15} \right)}^2} - 4\times1\times\left( { - 100} \right)} }}{{2.1}} \\
\Rightarrow a = \dfrac{{15 \pm \sqrt {225 + 400} }}{2} \\
\Rightarrow a = \dfrac{{15 \pm \sqrt {625} }}{2} = \dfrac{{15 \pm 25}}{2} \;
\Rightarrow a = 20, - 5 \;
$
So here we can see that the solution set for the initial equation is $ (20,-5) $ and the set consists of two integers. Therefore, the correct answer is A) Two integers.
So, the correct answer is “Option A”.
Note: We can also find the roots using factorization as following
$
{a^2} - 15a - 100 = 0 \\
\Rightarrow {a^2} - 20a + 5a - 100 = 0 \\
\Rightarrow a\left( {a - 20} \right) + 5\left( {a - 20} \right) = 0 \\
\Rightarrow \left( {a - 20} \right)\left( {a + 5} \right) = 0 \\
\Rightarrow a = 20, - 5 \;
$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

SiO2GeO2 SnOand PbOare respectively A acidic amphoteric class 11 chemistry CBSE

