
The set of solutions for the equation $ {\log _{10}}\left( {{a^2} - 15a} \right) = 2 $ consists of?
A) Two integers
B) One integer and one fraction
C) Two irrational numbers
D) Two non-real numbers
E) No numbers, that is, set is empty
Answer
484.2k+ views
Hint: We can solve the equation by opening the log and then forming the quadratic equation. Then we can find the solutions to quadratic equations by factorizing or by using the quadratic formula.
Formula used-
Formulae used are
$ {\log _a}y = x \Leftrightarrow {a^x} = y $ where $ a \ne 0,1,y \ne 0 $
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ for a quadratic equation $ a{x^2} + bx + c = 0 $ where $ a \ne 0 $
Complete step-by-step answer:
According to the question,
$ {\log _{10}}\left( {{a^2} - 15a} \right) = 2 $
We can remove the log and convert the equation to simple algebra by
using, $ {\log _a}y = x \Leftrightarrow {a^x} = y $ we can see
$
{a^2} - 15a = {10^2} \\
\Rightarrow {a^2} - 15a - 100 = 0 \\
$
Now that we have got a quadratic equation. We can find the roots by any method.
Using the quadratic formula, $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
$
a = \dfrac{{ - \left( { - 15} \right) \pm \sqrt {{{\left( { - 15} \right)}^2} - 4\times1\times\left( { - 100} \right)} }}{{2.1}} \\
\Rightarrow a = \dfrac{{15 \pm \sqrt {225 + 400} }}{2} \\
\Rightarrow a = \dfrac{{15 \pm \sqrt {625} }}{2} = \dfrac{{15 \pm 25}}{2} \;
\Rightarrow a = 20, - 5 \;
$
So here we can see that the solution set for the initial equation is $ (20,-5) $ and the set consists of two integers. Therefore, the correct answer is A) Two integers.
So, the correct answer is “Option A”.
Note: We can also find the roots using factorization as following
$
{a^2} - 15a - 100 = 0 \\
\Rightarrow {a^2} - 20a + 5a - 100 = 0 \\
\Rightarrow a\left( {a - 20} \right) + 5\left( {a - 20} \right) = 0 \\
\Rightarrow \left( {a - 20} \right)\left( {a + 5} \right) = 0 \\
\Rightarrow a = 20, - 5 \;
$
Formula used-
Formulae used are
$ {\log _a}y = x \Leftrightarrow {a^x} = y $ where $ a \ne 0,1,y \ne 0 $
$ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ for a quadratic equation $ a{x^2} + bx + c = 0 $ where $ a \ne 0 $
Complete step-by-step answer:
According to the question,
$ {\log _{10}}\left( {{a^2} - 15a} \right) = 2 $
We can remove the log and convert the equation to simple algebra by
using, $ {\log _a}y = x \Leftrightarrow {a^x} = y $ we can see
$
{a^2} - 15a = {10^2} \\
\Rightarrow {a^2} - 15a - 100 = 0 \\
$
Now that we have got a quadratic equation. We can find the roots by any method.
Using the quadratic formula, $ x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $
$
a = \dfrac{{ - \left( { - 15} \right) \pm \sqrt {{{\left( { - 15} \right)}^2} - 4\times1\times\left( { - 100} \right)} }}{{2.1}} \\
\Rightarrow a = \dfrac{{15 \pm \sqrt {225 + 400} }}{2} \\
\Rightarrow a = \dfrac{{15 \pm \sqrt {625} }}{2} = \dfrac{{15 \pm 25}}{2} \;
\Rightarrow a = 20, - 5 \;
$
So here we can see that the solution set for the initial equation is $ (20,-5) $ and the set consists of two integers. Therefore, the correct answer is A) Two integers.
So, the correct answer is “Option A”.
Note: We can also find the roots using factorization as following
$
{a^2} - 15a - 100 = 0 \\
\Rightarrow {a^2} - 20a + 5a - 100 = 0 \\
\Rightarrow a\left( {a - 20} \right) + 5\left( {a - 20} \right) = 0 \\
\Rightarrow \left( {a - 20} \right)\left( {a + 5} \right) = 0 \\
\Rightarrow a = 20, - 5 \;
$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
