
The Schrodinger wave equation for hydrogen atom is:
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Where ${a_0}$ is Bohr radius. If the radial node in 2s be at ${r_0}$ , then find r in terms of ${a_0}$
A.$\dfrac{{{a_0}}}{2}$
B.$2{a_0}$
C.$\sqrt {2{a_0}} $
D.$\dfrac{{{a_0}}}{{\sqrt 2 }}$
Answer
573.9k+ views
Hint: The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero, therefore ${\Psi _{2s}}^2 = 0$ and At node, the radial node is at \[{r_0}\] , So \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]\] = 0, then we can calculate r in terms of ${a_0}$
Complete step by step answer:
Given in the question,
The Schrodinger wave equation for hydrogen atom is
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero. ${\Psi _{2s}}^2 = 0$ since there is no angular component \[{Y_I}^{ml}(\theta ,\emptyset )\] to a wave function for a spherical orbital \[(l = 0,ml = 0)\]
At node, the radial node is at \[{r_0}\]
0 = \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Since \[e{ - ^{\dfrac{r}{{{a_0}}}}} \ne 0\] for r in between 0 and \[\infty \] (where nodes can occur), that can be divided out as well.
$\therefore 2 - \dfrac{{{r_0}}}{{{a_0}}} = 0$
$\dfrac{{{r_0}}}{{{a_0}}} = 2$
${r_0} = 2{a_0}$
Therefore, the correct answer is option (B).
Note: The wave function \[(\Psi )\] , is a mathematical function which is used to describe a quantum object. The wave function that describes an electron in an atom is a product between the radial wave function and the angular wave function. The radial wave function depends only on the distance from the nucleus and is represented by r.
A node occurs when a wave function changes signs, i.e. when its passes through zero. And a radial node occurs when a radial wave function passes through zero. An electron has the zero probability of being located at a node.
Complete step by step answer:
Given in the question,
The Schrodinger wave equation for hydrogen atom is
\[{\Psi _{2s}} = \dfrac{1}{{4\sqrt 2 }}{\left( {\dfrac{1}{{{a_0}}}} \right)^{\dfrac{3}{2}}}[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
The radial node occurs where the radial component ${R_{nl}}(r)$ of the wave function goes to zero. ${\Psi _{2s}}^2 = 0$ since there is no angular component \[{Y_I}^{ml}(\theta ,\emptyset )\] to a wave function for a spherical orbital \[(l = 0,ml = 0)\]
At node, the radial node is at \[{r_0}\]
0 = \[[2 - \dfrac{{{r_0}}}{{{a_0}}}]e{ - ^{\dfrac{r}{{{a_0}}}}}\]
Since \[e{ - ^{\dfrac{r}{{{a_0}}}}} \ne 0\] for r in between 0 and \[\infty \] (where nodes can occur), that can be divided out as well.
$\therefore 2 - \dfrac{{{r_0}}}{{{a_0}}} = 0$
$\dfrac{{{r_0}}}{{{a_0}}} = 2$
${r_0} = 2{a_0}$
Therefore, the correct answer is option (B).
Note: The wave function \[(\Psi )\] , is a mathematical function which is used to describe a quantum object. The wave function that describes an electron in an atom is a product between the radial wave function and the angular wave function. The radial wave function depends only on the distance from the nucleus and is represented by r.
A node occurs when a wave function changes signs, i.e. when its passes through zero. And a radial node occurs when a radial wave function passes through zero. An electron has the zero probability of being located at a node.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

