
The relation between electric field E and magnetic field H in electromagnetic wave is:
A. \[E=H\]
B. \[E=\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}H\]
C. \[E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H\]
D. \[E=\sqrt{\dfrac{{{\varepsilon }_{o}}}{{{\mu }_{o}}}}H\]
Answer
571.5k+ views
Hint: The ratio of the magnitudes of electric and magnetic fields equals the speed of light in free space.
Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:
\[
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\
\]
Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:
\[
\overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\]
Where \[\overset{\to }{\mathop{{{E}_{o}}}}\,\] and \[\overset{\to }{\mathop{{{H}_{o}}}}\,\] are complex amplitudes, which are constants in space and time, \[\overset{\to }{\mathop{k}}\,\] is the wave vector determining the direction of propagation of the wave. \[\overset{\to }{\mathop{k}}\,\] is defined as
\[\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,\]
Where \[\overset{\wedge }{\mathop{n}}\,\] is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0\] respectively:
\[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0\]
Thus, \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t}\] and \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t}\] respectively:
\[
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\
\]
Since \[\overset{\to }{\mathop{E}}\,\] is normal to \[\overset{\to }{\mathop{k}}\,\], in terms of magnitude,
\[
\text{ }kE={{\mu }_{o}}\omega H \\
\sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\!\![\!\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\
\text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\
\]
Therefore, option C is the correct relation between E and H.
Additional information:
\[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\,\] implies that \[\overset{\to }{\mathop{H}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{E}}\,\].
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\,\] implies that \[\overset{\to }{\mathop{E}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{H}}\,\].
Thus, the field \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are mutually perpendicular and also they are perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.
Note: The relation obtained between \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] is only true for plane electromagnetic waves in free space.
Formula used:
In free space, where there is no charge or current, the four Maxwell’s equations are of the following form:
\[
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0 \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t} \\
\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t} \\
\]
Complete step by step solution:
Consider the plane wave equations of electric wave and magnetic wave:
\[
\overset{\to }{\mathop{E}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{E}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\overset{\to }{\mathop{H}}\,\left( \overset{\to }{\mathop{r}}\,,t \right)=\overset{\to }{\mathop{{{H}_{o}}}}\,{{e}^{j(\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{r}}\,-\omega t)}} \\
\]
Where \[\overset{\to }{\mathop{{{E}_{o}}}}\,\] and \[\overset{\to }{\mathop{{{H}_{o}}}}\,\] are complex amplitudes, which are constants in space and time, \[\overset{\to }{\mathop{k}}\,\] is the wave vector determining the direction of propagation of the wave. \[\overset{\to }{\mathop{k}}\,\] is defined as
\[\overset{\to }{\mathop{k}}\,=\dfrac{2\pi }{\lambda }\overset{\wedge }{\mathop{n}}\,=\dfrac{\omega }{c}\overset{\wedge }{\mathop{n}}\,\]
Where \[\overset{\wedge }{\mathop{n}}\,\] is the unit vector along the direction of propagation.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{\nabla }}\,\cdot \overset{\to }{\mathop{H}}\,=0\] respectively:
\[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{E}}\,=0\] and \[\overset{\to }{\mathop{k}}\,\cdot \overset{\to }{\mathop{H}}\,=0\]
Thus, \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
Substituting the plane wave solutions in equations \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{E}}\,=-{{\mu }_{o}}\dfrac{\partial \overset{\to }{\mathop{H}}\,}{\partial t}\] and \[\overset{\to }{\mathop{\nabla }}\,\times \overset{\to }{\mathop{H}}\,={{\varepsilon }_{o}}\dfrac{\partial \overset{\to }{\mathop{E}}\,}{\partial t}\] respectively:
\[
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\, \\
\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\, \\
\]
Since \[\overset{\to }{\mathop{E}}\,\] is normal to \[\overset{\to }{\mathop{k}}\,\], in terms of magnitude,
\[
\text{ }kE={{\mu }_{o}}\omega H \\
\sqrt{{{\varepsilon }_{o}}}E=\sqrt{{{\mu }_{o}}}H\text{ }\!\![\!\!\text{ }{{k}^{2}}={{\varepsilon }_{o}}{{\mu }_{o}}{{\omega }^{2}}] \\
\text{ }E=\sqrt{\dfrac{{{\mu }_{o}}}{{{\varepsilon }_{o}}}}H \\
\]
Therefore, option C is the correct relation between E and H.
Additional information:
\[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are both perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
This implies that electromagnetic waves are transverse in nature.
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{E}}\,={{\mu }_{o}}\omega \overset{\to }{\mathop{H}}\,\] implies that \[\overset{\to }{\mathop{H}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{E}}\,\].
\[\overset{\to }{\mathop{k}}\,\times \overset{\to }{\mathop{H}}\,=-{{\varepsilon }_{o}}\omega \overset{\to }{\mathop{E}}\,\] implies that \[\overset{\to }{\mathop{E}}\,\] is perpendicular to both \[\overset{\to }{\mathop{k}}\,\] and \[\overset{\to }{\mathop{H}}\,\].
Thus, the field \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] are mutually perpendicular and also they are perpendicular to the direction of propagation vector \[\overset{\to }{\mathop{k}}\,\].
The velocity of propagation of electromagnetic waves is equal to the speed of light in free space. This indicates that the light is an electromagnetic wave.
Note: The relation obtained between \[\overset{\to }{\mathop{E}}\,\] and \[\overset{\to }{\mathop{H}}\,\] is only true for plane electromagnetic waves in free space.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

