
The rate of a reaction is doubled for every $ {10^o}C $ rise in temperature. The increase in rate as result of increase in temperature from $ {10^o}C $ to $ {100^o}C $ is:
$ (A)112 $
$ (B)512 $
$ (C)400 $
$ (D)256 $
Answer
489.3k+ views
Hint: In chemical kinetics, according to the Arrhenius equation, we can understand that the rate of a reaction is directly proportional to the temperature conditions. We are also given that for every $ {10^o}C $ rise in temperature, the rate of a reaction gets doubled. So, based on this information we will find the increase in rate due to the increase in temperature from $ {10^o}C $ to $ {100^o}C $ .
Complete Step By Step Answer:
We will first see the Arrhenius equation which shows that the rate of a reaction is directly proportional to the temperature.
$ \ln k = - \dfrac{{{E_a}}}{{RT}} + \ln A $
Where k is the rate constant for the reaction, $ {E_a} $ is energy of activation, R is known as the universal gas constant, T is the temperature represented in Kelvin and A is known as the pre-exponential factor.
So, for every $ {10^o}C $ rise in temperature, the rate of a reaction gets doubled. Therefore, the rate of reaction changes by $ {2^n} $ times.
Where, n is the number of times the temperature is increased by $ {10^o}C $ .
Therefore, the value of n when temperature increases from $ {10^o}C $ to $ {100^o}C $ is $ 9. $
Hence, the new rate of reaction is $ {2^9}. $
The new rate of reaction is $ 512. $
Therefore, the correct option is $ (B)512. $ .
Note:
The rate of a reaction increases with the increase in temperature because collision between the molecules of the reactants increases. This happens because on increasing temperature, the kinetic energy of the molecules also increases. The ratio of the rate constant at two temperatures with a difference of ten degrees Celsius is known as temperature coefficient.
Complete Step By Step Answer:
We will first see the Arrhenius equation which shows that the rate of a reaction is directly proportional to the temperature.
$ \ln k = - \dfrac{{{E_a}}}{{RT}} + \ln A $
Where k is the rate constant for the reaction, $ {E_a} $ is energy of activation, R is known as the universal gas constant, T is the temperature represented in Kelvin and A is known as the pre-exponential factor.
So, for every $ {10^o}C $ rise in temperature, the rate of a reaction gets doubled. Therefore, the rate of reaction changes by $ {2^n} $ times.
Where, n is the number of times the temperature is increased by $ {10^o}C $ .
Therefore, the value of n when temperature increases from $ {10^o}C $ to $ {100^o}C $ is $ 9. $
Hence, the new rate of reaction is $ {2^9}. $
The new rate of reaction is $ 512. $
Therefore, the correct option is $ (B)512. $ .
Note:
The rate of a reaction increases with the increase in temperature because collision between the molecules of the reactants increases. This happens because on increasing temperature, the kinetic energy of the molecules also increases. The ratio of the rate constant at two temperatures with a difference of ten degrees Celsius is known as temperature coefficient.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

