
The projection of \[\overrightarrow a = 3\widehat i - \widehat j + 5\widehat k\]on \[\overrightarrow b = 2\widehat i + 3\widehat j + \widehat k\]is
(A) $\dfrac{8}{{\sqrt {135} }}$
(B)$\dfrac{8}{{\sqrt {139} }}$
(C) $\dfrac{8}{{\sqrt {14} }}$
(D) $\sqrt {14} $
Answer
509.7k+ views
Hint :- If the vector a is projected on vector b then,
The scalar projection formula
\[\Pr oj(\overrightarrow a on\overrightarrow b ) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\]
Complete step by step solution
Given
\[\overrightarrow a = 3\widehat i - \widehat j + 5\widehat k\]
\[\overrightarrow b = 2\widehat i + 3\widehat j + \widehat k\]
\[\overrightarrow a = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k\]
\[\overrightarrow b = {a_2}\widehat i + {b_2}\widehat j + {c_2}\widehat k\]
We know that,
\[\overrightarrow a .\overrightarrow b = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
\[\begin{gathered}
\left| {\overrightarrow b } \right| = \sqrt {{{\left( {{a_2}} \right)}^2} + {{\left( {{b_2}} \right)}^2} + {{\left( {{c_2}} \right)}^2}} \\
\overrightarrow a .\overrightarrow b and\left| {\overrightarrow b } \right| \\
\end{gathered} \]
\[\Pr oj(\overrightarrow a on\overrightarrow b ) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\]
\[\Pr oj(\overrightarrow a on\overrightarrow b ) = \dfrac{{(3\widehat i - \widehat j + 5\widehat k).(2\widehat i + 3\widehat j + \widehat k)}}{{\left| {2\widehat i + 3\widehat j + \widehat k} \right|}}\]
$ = \dfrac{{(3)(2) - (1)(3) + (5)(1)}}{{\sqrt {{{(2)}^2} + {{(3)}^2} + {{(1)}^2}} }}$
By Formula of
\[\overrightarrow a .\overrightarrow b and\left| {\overrightarrow b } \right|\]
$ = \dfrac{{6 - 3 + 5}}{{\sqrt {14} }}$
$ = \dfrac{8}{{\sqrt {14} }}$
So option (C) $\dfrac{8}{{\sqrt {14} }}$is the right answer.
Note –If we have to find Projection $\overrightarrow b $ on \[\overrightarrow a \]
Then
\[\Pr oj(\overrightarrow b on\overrightarrow a ) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|}}\]
The scalar projection formula
\[\Pr oj(\overrightarrow a on\overrightarrow b ) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\]
Complete step by step solution
Given
\[\overrightarrow a = 3\widehat i - \widehat j + 5\widehat k\]
\[\overrightarrow b = 2\widehat i + 3\widehat j + \widehat k\]
\[\overrightarrow a = {a_1}\widehat i + {b_1}\widehat j + {c_1}\widehat k\]
\[\overrightarrow b = {a_2}\widehat i + {b_2}\widehat j + {c_2}\widehat k\]
We know that,
\[\overrightarrow a .\overrightarrow b = {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}\]
\[\begin{gathered}
\left| {\overrightarrow b } \right| = \sqrt {{{\left( {{a_2}} \right)}^2} + {{\left( {{b_2}} \right)}^2} + {{\left( {{c_2}} \right)}^2}} \\
\overrightarrow a .\overrightarrow b and\left| {\overrightarrow b } \right| \\
\end{gathered} \]
\[\Pr oj(\overrightarrow a on\overrightarrow b ) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\]
\[\Pr oj(\overrightarrow a on\overrightarrow b ) = \dfrac{{(3\widehat i - \widehat j + 5\widehat k).(2\widehat i + 3\widehat j + \widehat k)}}{{\left| {2\widehat i + 3\widehat j + \widehat k} \right|}}\]
$ = \dfrac{{(3)(2) - (1)(3) + (5)(1)}}{{\sqrt {{{(2)}^2} + {{(3)}^2} + {{(1)}^2}} }}$
By Formula of
\[\overrightarrow a .\overrightarrow b and\left| {\overrightarrow b } \right|\]
$ = \dfrac{{6 - 3 + 5}}{{\sqrt {14} }}$
$ = \dfrac{8}{{\sqrt {14} }}$
So option (C) $\dfrac{8}{{\sqrt {14} }}$is the right answer.
Note –If we have to find Projection $\overrightarrow b $ on \[\overrightarrow a \]
Then
\[\Pr oj(\overrightarrow b on\overrightarrow a ) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|}}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Difference between mass and weight class 10 physics CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

What is Whales collective noun class 10 english CBSE

Write 10 lines on the usefulness of microorganisms class 10 biology CBSE

Describe the Salient Features of Indian Economy
