Answer
Verified
418.2k+ views
Hint: We change the base for logarithms involved in the given question to new base $d=10$ using the base change formula ${{\log }_{b}}x=\dfrac{{{\log }_{d}}x}{{{\log }_{d}}b}$ and then multiply. We use logarithmic identity of product ${{\log }_{b}}mn={{\log }_{b}}m+{{\log }_{n}}n$ and logarithmic identity of quotient ${{\log }_{b}}\dfrac{m}{n}={{\log }_{b}}m-{{\log }_{b}}n$ to proceed and use the logarithmic table to evaluate.
Complete step-by-step solution
We know that the logarithm is the inverse operation to exponentiation. That means the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$ must be raised, to produce that number $x$, which means if ${{b}^{y}}=x$ then the logarithm denoted as log and calculated as
\[{{\log }_{b}}x=y\]
Here $x,y,b$ are real numbers subjected to the condition that the argument of logarithm $x$ is always a positive number and $b$ is a positive number excluding 1. If we want to change the base of the logarithms to new base say $d>0,d\ne 1$ then we can do it using following formula,
\[{{\log }_{b}}x=\dfrac{{{\log }_{d}}x}{{{\log }_{d}}b}\]
We multiply the three given logarithms in the question and have
\[{{\log }_{2}}17\times {{\log }_{15}}2\times {{\log }_{3}}\dfrac{1}{5}\]
We change the base of each logarithm to base $d=10$ using the base change formula with $x=17,b=2$ in the first logarithm, with $x=2,b=15$ in the second logarithm and with $x=\dfrac{1}{5},b=3$ in third logarithm. We have,
\[\begin{align}
& \Rightarrow {{\log }_{2}}17\times {{\log }_{15}}2\times {{\log }_{3}}\dfrac{1}{5} \\
& \Rightarrow \dfrac{\log 17}{\log 2}\times \dfrac{\log 2}{\log 15}\times \dfrac{\log \dfrac{1}{5}}{\log 3} \\
& \Rightarrow \dfrac{\log 17}{\log 15}\times \dfrac{\log \dfrac{1}{5}}{\log 3} \\
& \Rightarrow \dfrac{\log 17}{\log \left( 3\times 5 \right)}\times \dfrac{\log \dfrac{1}{5}}{\log 3} \\
\end{align}\]
We use the logarithmic identity of product ${{\log }_{b}}mn={{\log }_{b}}m+{{\log }_{n}}n$ for $m=3,n=5,b=10$and logarithmic identity of quotient ${{\log }_{b}}\dfrac{m}{n}={{\log }_{b}}m-{{\log }_{b}}n$ for $m=1,n=5,b=10$ in the above step and proceed to have,
\[\Rightarrow \dfrac{\log 17}{\log 3+\log 5}\times \dfrac{\log 1-\log 5}{\log 3}\]
We check the logarithm table and put logarithmic value in the above step to have,
\[\begin{align}
& \Rightarrow \dfrac{1.23}{0.477+.699}\times \dfrac{0-0.699}{0.477} \\
& \Rightarrow \dfrac{1.23\times \left( -0.699 \right)}{1.176\times 0.477}=\dfrac{-0.859}{0.560}=-1.49 \\
\end{align}\]
So the product of logarithms is $-1.49$ approximately and the integers between which $-1.49$ are -1 and -2.
Note: We note that if we logarithm with base 10 is called common logarithm and we have changed the base to 10 because we know about common logarithm, We note that base cannot be 1 or negative. If we do not want to use logarithm table we can use logarithmic identities inequality $ b > 1,x > y\Rightarrow {{\log }_{b}}x < {{\log }_{b}}y$.
Complete step-by-step solution
We know that the logarithm is the inverse operation to exponentiation. That means the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$ must be raised, to produce that number $x$, which means if ${{b}^{y}}=x$ then the logarithm denoted as log and calculated as
\[{{\log }_{b}}x=y\]
Here $x,y,b$ are real numbers subjected to the condition that the argument of logarithm $x$ is always a positive number and $b$ is a positive number excluding 1. If we want to change the base of the logarithms to new base say $d>0,d\ne 1$ then we can do it using following formula,
\[{{\log }_{b}}x=\dfrac{{{\log }_{d}}x}{{{\log }_{d}}b}\]
We multiply the three given logarithms in the question and have
\[{{\log }_{2}}17\times {{\log }_{15}}2\times {{\log }_{3}}\dfrac{1}{5}\]
We change the base of each logarithm to base $d=10$ using the base change formula with $x=17,b=2$ in the first logarithm, with $x=2,b=15$ in the second logarithm and with $x=\dfrac{1}{5},b=3$ in third logarithm. We have,
\[\begin{align}
& \Rightarrow {{\log }_{2}}17\times {{\log }_{15}}2\times {{\log }_{3}}\dfrac{1}{5} \\
& \Rightarrow \dfrac{\log 17}{\log 2}\times \dfrac{\log 2}{\log 15}\times \dfrac{\log \dfrac{1}{5}}{\log 3} \\
& \Rightarrow \dfrac{\log 17}{\log 15}\times \dfrac{\log \dfrac{1}{5}}{\log 3} \\
& \Rightarrow \dfrac{\log 17}{\log \left( 3\times 5 \right)}\times \dfrac{\log \dfrac{1}{5}}{\log 3} \\
\end{align}\]
We use the logarithmic identity of product ${{\log }_{b}}mn={{\log }_{b}}m+{{\log }_{n}}n$ for $m=3,n=5,b=10$and logarithmic identity of quotient ${{\log }_{b}}\dfrac{m}{n}={{\log }_{b}}m-{{\log }_{b}}n$ for $m=1,n=5,b=10$ in the above step and proceed to have,
\[\Rightarrow \dfrac{\log 17}{\log 3+\log 5}\times \dfrac{\log 1-\log 5}{\log 3}\]
We check the logarithm table and put logarithmic value in the above step to have,
\[\begin{align}
& \Rightarrow \dfrac{1.23}{0.477+.699}\times \dfrac{0-0.699}{0.477} \\
& \Rightarrow \dfrac{1.23\times \left( -0.699 \right)}{1.176\times 0.477}=\dfrac{-0.859}{0.560}=-1.49 \\
\end{align}\]
So the product of logarithms is $-1.49$ approximately and the integers between which $-1.49$ are -1 and -2.
Note: We note that if we logarithm with base 10 is called common logarithm and we have changed the base to 10 because we know about common logarithm, We note that base cannot be 1 or negative. If we do not want to use logarithm table we can use logarithmic identities inequality $ b > 1,x > y\Rightarrow {{\log }_{b}}x < {{\log }_{b}}y$.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE