
The product of any \[r\] consecutive natural numbers is always divisible by \[r!\]
A. True
B. False
Answer
568.2k+ views
Hint: First of all, consider the \[r\] consecutive natural numbers as \[\left( {n + r} \right),\left( {n + r - 1} \right),...................,\left( {n + 1} \right)\]. Then find their product and simplify it further by using the formula in permutations to show that \[r!\] is a factor of \[r\] consecutive natural numbers to get the required answer.
Complete step-by-step answer:
Let us consider the \[r\] consecutive natural numbers as \[\left( {n + r} \right),\left( {n + r - 1} \right),...................,\left( {n + 1} \right)\] where \[n\] is the smallest natural number than the given \[r\] consecutive natural numbers.
Now, consider the product of these \[r\] consecutive natural numbers as
\[ \Rightarrow \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\]
We know that \[{}^{n + r}{P_r} = \dfrac{{\left( {n + r} \right)!}}{{\left( {n + r - r} \right)!}} = \dfrac{{\left( {n + r} \right)!}}{{n!}} = \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\].
By using this formula, the product of \[r\] consecutive natural numbers are given by
\[ \Rightarrow \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right) = \dfrac{{\left( {n + r} \right)!}}{{n!}}\]
Now, if it is true that prime factors in \[\left( {n + r} \right)!\] appear just as frequently or more as in \[n!r!\], then now for some integer \[k\] that \[\left( {n + r} \right)! = k \times n! \times r!\].
So, we have \[\dfrac{{\left( {n + r} \right)!}}{{n!}} = \dfrac{{k \times n! \times r!}}{{n!}} = k \times r!\]
Hence, the product of \[r\] consecutive natural numbers are \[\left( {n + r} \right)\left( {n + r - 1} \right)............................................\left( {n + 1} \right) = k \times r!\]
Clearly, the product of \[r\] consecutive natural numbers are divisible by \[r!\] as it is a factor of the product of the \[r\] consecutive natural numbers.
Hence, proved.
So, the correct answer is “Option A”.
Note: Consecutive natural numbers are natural numbers which follow each other in the order without any gaps, from smallest to largest. For example, \[1,2,3,............\]. To solve these kinds of problems always remember the formula \[{}^{n + r}{P_r} = \dfrac{{\left( {n + r} \right)!}}{{\left( {n + r - r} \right)!}} = \dfrac{{\left( {n + r} \right)!}}{{n!}} = \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\].
Complete step-by-step answer:
Let us consider the \[r\] consecutive natural numbers as \[\left( {n + r} \right),\left( {n + r - 1} \right),...................,\left( {n + 1} \right)\] where \[n\] is the smallest natural number than the given \[r\] consecutive natural numbers.
Now, consider the product of these \[r\] consecutive natural numbers as
\[ \Rightarrow \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\]
We know that \[{}^{n + r}{P_r} = \dfrac{{\left( {n + r} \right)!}}{{\left( {n + r - r} \right)!}} = \dfrac{{\left( {n + r} \right)!}}{{n!}} = \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\].
By using this formula, the product of \[r\] consecutive natural numbers are given by
\[ \Rightarrow \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right) = \dfrac{{\left( {n + r} \right)!}}{{n!}}\]
Now, if it is true that prime factors in \[\left( {n + r} \right)!\] appear just as frequently or more as in \[n!r!\], then now for some integer \[k\] that \[\left( {n + r} \right)! = k \times n! \times r!\].
So, we have \[\dfrac{{\left( {n + r} \right)!}}{{n!}} = \dfrac{{k \times n! \times r!}}{{n!}} = k \times r!\]
Hence, the product of \[r\] consecutive natural numbers are \[\left( {n + r} \right)\left( {n + r - 1} \right)............................................\left( {n + 1} \right) = k \times r!\]
Clearly, the product of \[r\] consecutive natural numbers are divisible by \[r!\] as it is a factor of the product of the \[r\] consecutive natural numbers.
Hence, proved.
So, the correct answer is “Option A”.
Note: Consecutive natural numbers are natural numbers which follow each other in the order without any gaps, from smallest to largest. For example, \[1,2,3,............\]. To solve these kinds of problems always remember the formula \[{}^{n + r}{P_r} = \dfrac{{\left( {n + r} \right)!}}{{\left( {n + r - r} \right)!}} = \dfrac{{\left( {n + r} \right)!}}{{n!}} = \left( {n + r} \right)\left( {n + r - 1} \right).........................\left( {n + 1} \right)\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

