
The product of 4 consecutive natural numbers is 5040. Find those numbers.
Answer
597k+ views
Hint: We know that consecutive numbers are the number which follow each other in order, without any gap like 22,24,26,28 are the example of consecutive even numbers. Similarly we will find 4 consecutive natural numbers as $n$, $n+1$, $n+2$ and $n+3$. According to the question $n\times (n+1)\times (n+2)\times (n+3)=5040$.
Complete step-by-step answer:
It is given in the question that the product of four consecutive natural numbers is 5040. We know that any consecutive number following order like 1,3,5,7,9 are the consecutive odd natural numbers. Also the natural numbers start from 1. Now, let us assume that the first number out of 4 numbers is $n$, therefore, the second number will be $n+1$, third number will be $n+2$, fourth number will be $n+3$.
Given that the product of these consecutive numbers is 5040. Therefore, in mathematical form, we can write as following equation -
$n\times (n+1)\times (n+2)\times (n+3)=5040$. On solving we get following steps
= $({{n}^{2}}+3n)\times ({{n}^{2}}+3n+2)=5040$
Now, we assume that $a=({{n}^{2}}+3n)$, then, we get $a\times (a+2)=5040$
= ${{a}^{2}}+2a=5040$, adding 1 to both sides, we get
= ${{a}^{2}}+2a+1=5041$
= ${{(a+1)}^{2}}=5041$.
Therefore, taking under root on both sides
$(a+1)=\pm 71$ .
According to our assumption, $a=({{n}^{2}}+3n)$, so using this equation, we get
${{n}^{2}}+3n+1=\pm 71$, now we have two equations, ${{n}^{2}}+3n-70=0$ and ${{n}^{2}}+3n+72=0$. For equation ${{n}^{2}}+3n+72=0$, we get Discriminant, D, to be negative,
$D={{b}^{2}}-4ac$
$\begin{align}
& D=9-4\times 1\times 72 \\
& D=9-288 \\
& D=-279 \\
\end{align}$
therefore no real roots.
Hence only the equation ${{n}^{2}}+3n-70=0$ is left. Solving this equation, we get
$\begin{align}
& {{n}^{2}}+10n-7n-70=0 \\
& n\times (n+10)-7\times (n+10)=0 \\
& (n+10)\times (n-7)=0 \\
\end{align}$
Therefore, $n=7$ and $n=-10$. We know that -10 is not a natural number, therefore $n=7$ is the only solution for the given question. Hence, the consecutive numbers that satisfy the given equation are $n=7$, $n+1=8$, $n+2=9$, $n+3=10$ , that is, $7\times 8\times 9\times 10=5040$ .
Note: If we do not assume $a=({{n}^{2}}+3n)$ in the solution part then our calculation becomes more complex and the chances of error are increased. So, in order to reduce our effort we must proceed with the made assumption.Students should know the concept of discriminant to check whether roots are real or imaginary.To find discriminant we use ${D}^2={b}^2-4ac$, If $D>0$ and $D=0$ then roots are real and if $D < 0$ then roots are imaginary.
Complete step-by-step answer:
It is given in the question that the product of four consecutive natural numbers is 5040. We know that any consecutive number following order like 1,3,5,7,9 are the consecutive odd natural numbers. Also the natural numbers start from 1. Now, let us assume that the first number out of 4 numbers is $n$, therefore, the second number will be $n+1$, third number will be $n+2$, fourth number will be $n+3$.
Given that the product of these consecutive numbers is 5040. Therefore, in mathematical form, we can write as following equation -
$n\times (n+1)\times (n+2)\times (n+3)=5040$. On solving we get following steps
= $({{n}^{2}}+3n)\times ({{n}^{2}}+3n+2)=5040$
Now, we assume that $a=({{n}^{2}}+3n)$, then, we get $a\times (a+2)=5040$
= ${{a}^{2}}+2a=5040$, adding 1 to both sides, we get
= ${{a}^{2}}+2a+1=5041$
= ${{(a+1)}^{2}}=5041$.
Therefore, taking under root on both sides
$(a+1)=\pm 71$ .
According to our assumption, $a=({{n}^{2}}+3n)$, so using this equation, we get
${{n}^{2}}+3n+1=\pm 71$, now we have two equations, ${{n}^{2}}+3n-70=0$ and ${{n}^{2}}+3n+72=0$. For equation ${{n}^{2}}+3n+72=0$, we get Discriminant, D, to be negative,
$D={{b}^{2}}-4ac$
$\begin{align}
& D=9-4\times 1\times 72 \\
& D=9-288 \\
& D=-279 \\
\end{align}$
therefore no real roots.
Hence only the equation ${{n}^{2}}+3n-70=0$ is left. Solving this equation, we get
$\begin{align}
& {{n}^{2}}+10n-7n-70=0 \\
& n\times (n+10)-7\times (n+10)=0 \\
& (n+10)\times (n-7)=0 \\
\end{align}$
Therefore, $n=7$ and $n=-10$. We know that -10 is not a natural number, therefore $n=7$ is the only solution for the given question. Hence, the consecutive numbers that satisfy the given equation are $n=7$, $n+1=8$, $n+2=9$, $n+3=10$ , that is, $7\times 8\times 9\times 10=5040$ .
Note: If we do not assume $a=({{n}^{2}}+3n)$ in the solution part then our calculation becomes more complex and the chances of error are increased. So, in order to reduce our effort we must proceed with the made assumption.Students should know the concept of discriminant to check whether roots are real or imaginary.To find discriminant we use ${D}^2={b}^2-4ac$, If $D>0$ and $D=0$ then roots are real and if $D < 0$ then roots are imaginary.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

