Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# The probability of getting a composite number on the throw of a dice is:$A.\dfrac{1}{3} \\ B.\dfrac{5}{6} \\ C.\dfrac{1}{2} \\$D. None of these

Last updated date: 12th Aug 2024
Total views: 356.8k
Views today: 9.56k
Verified
356.8k+ views
Hint: We will consider a sample space and the favourable outcomes individually to avoid any kind of mistake. A composite number is a non prime number.

When we throw a dice, the number of outcomes which are possible are $6$.
The sample space $S$ of the event is$\left\{ {1,2,3,4,5,6} \right\}$.
There are 2 composite or non prime numbers in the sample space which are $\{ 4,6\}$.
So, the number of favourable outcomes which are possible $= 2$
Let $A$ be the event of getting composite numbers when we throw a dice.
$= P(A) \\ = \dfrac{{n(A)}}{{n(S)}} \\ = \dfrac{2}{6} \\ = \dfrac{1}{3} \\$
$n(A)\& n(S)$are the cardinal numbers of the event of getting composite numbers when we throw a dice and the sample space respectively.
Therefore, the probability of getting a composite number on throwing a dice is $\dfrac{1}{3}$.
Note: We use the formula P(an event)$= \dfrac{{n(A)}}{{n(S)}}$where A is the event, n(A) is the number of favourable outcomes and n(S) is the total number of possible outcomes. In these types of questions, we will always use the simple probability method in order to avoid making any mistakes.