
The principal argument of the complex number $\dfrac{{{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}}}{-2i\left( -\sqrt{3}+i \right)}$ is
(a) $\dfrac{19\pi }{12}$
(b) $-\dfrac{7\pi }{12}$
(c) $-\dfrac{5\pi }{12}$
(d) $\dfrac{5\pi }{12}$
Answer
598.2k+ views
Hint: In this question, we will use properties of the argument of complex numbers to simplify the expression. Then apply the argument formula to find the principal argument of the given expression.
Complete step by step answer:
We know that, argument of a complex number $z=a+ib$ is given by,
$\arg z={{\tan }^{-1}}\dfrac{b}{a}\cdots \cdots \left( i \right)$,
Where $\arg z$ is the argument of $z$.
In the given question, we will also use some properties of argument of complex numbers which are given as below,
For two complex numbers ${{z}_{1}}$ and ${{z}_{2}}$, properties are,
$\arg {{z}_{1}}^{n}=n\arg {{z}_{1}}\cdots \cdots \left( ii \right)$,
\[\arg \left( {{z}_{1}}\times {{z}_{2}} \right)=\arg {{z}_{1}}+\arg {{z}_{2}}\cdots \cdots \left( iii \right)\],
\[\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\arg {{z}_{1}}-\arg {{z}_{2}}\cdots \cdots \left( iv \right)\].
Now, the given expression in the question is,
$\dfrac{{{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}}}{-2i\left( -\sqrt{3}+i \right)}$.
So, we can write its argument as,
$\arg \left( \dfrac{{{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}}}{-2i\left( -\sqrt{3}+i \right)} \right)$
Here, applying property $\left( iv \right)$, we get,
$=\arg \left( {{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}} \right)-\arg \left( -2i\left( -\sqrt{3}+i \right) \right)$
Now, applying property $\left( iii \right)$ in both the argument terms, we get,
$\begin{align}
& =\arg {{\left( 1+i \right)}^{5}}+\arg {{\left( 1+\sqrt{3i} \right)}^{2}}-\left[ \arg \left( -2i \right)+\arg \left( -\sqrt{3}+i \right) \right] \\
& =\arg {{\left( 1+i \right)}^{5}}+\arg {{\left( 1+\sqrt{3i} \right)}^{2}}-\arg \left( -2i \right)-\arg \left( -\sqrt{3}+i \right)\cdots \cdots \left( v \right) \\
\end{align}$
Now, applying property $\left( ii \right)$ in first two terms of above expression, we get,
$=5\arg \left( 1+i \right)+2\arg \left( 1+\sqrt{3i} \right)-\arg \left( -2i \right)-\arg \left( -\sqrt{3}+i \right)$
Now, using the equation $\left( i \right)$ in $\arg \left( 1+i \right)$, we get, $a=1$ and $b=1$. Therefore,
$\arg \left( 1+i \right)={{\tan }^{-1}}\left( \dfrac{1}{1} \right)={{\tan }^{-1}}1=\dfrac{\pi }{4}$
Now, using equation $\left( i \right)$ in $\arg \left( 1+\sqrt{3i} \right)$ , we get, $a=1$ and $b=\sqrt{3}$. Therefore,
$\arg \left( 1+\sqrt{3i} \right)={{\tan }^{-1}}\left( \dfrac{\sqrt{3}}{1} \right)={{\tan }^{-1}}\sqrt{3}=\dfrac{\pi }{3}$
Now, using the equation $\left( i \right)$ in $\arg \left( -2i \right)$, we get, $a=0$ and $b=-2$. Therefore,
$\arg \left( -2i \right)={{\tan }^{-1}}\left( \dfrac{-2}{0} \right)={{\tan }^{-1}}\left( -\infty \right)=-\dfrac{\pi }{2}$
Now, using equation $\left( i \right)$ in$\arg \left( -\sqrt{3}+i \right)$ , we get, $a=-\sqrt{3}$ and $b=1$. Therefore,
$\arg \left( -\sqrt{3}+i \right)={{\tan }^{-1}}\left( \dfrac{1}{-\sqrt{3}} \right)={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)=\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}$
Using the above calculated values in equation $\left( v \right)$, we get,
$\arg \left( \dfrac{{{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}}}{-2i\left( -\sqrt{3}+i \right)} \right)=5\left( \dfrac{\pi }{4} \right)+2\left( \dfrac{\pi }{3} \right)-\left( -\dfrac{\pi }{2} \right)-\left( \dfrac{5\pi }{6} \right)$
$=\dfrac{5\pi }{4}+\dfrac{2\pi }{3}+\dfrac{\pi }{2}-\dfrac{5\pi }{6}$
Taking LCM of all the terms to add them, we get,
$\begin{align}
& =\dfrac{5\pi \times 3}{4\times 3}+\dfrac{2\pi \times 4}{3\times 4}+\dfrac{\pi \times 6}{2\times 6}-\dfrac{5\pi \times 2}{6\times 2} \\
& =\dfrac{15\pi }{12}+\dfrac{8\pi }{12}+\dfrac{6\pi }{12}-\dfrac{10\pi }{12} \\
& =\dfrac{15\pi +8\pi +6\pi -10\pi }{12} \\
& =\dfrac{19\pi }{12} \\
\end{align}$
But, the principal argument lies in the interval $\left( -\pi ,\pi \right)$ and tangent function is a periodic function with period $2\pi $.
Also, we can write $\dfrac{19\pi }{12}$ as, $\dfrac{24\pi -5\pi }{12}=2\pi -\dfrac{5\pi }{12}$.
Therefore, principal argument will be,
$\dfrac{5\pi }{12}$.
Hence, the required principal argument is $\dfrac{5\pi }{12}$.
Note: You can do this question in an alternative way by first solving the whole expression to bring it to the form of $a+ib$, and then use the argument formula. But that way calculation will become very long.
Complete step by step answer:
We know that, argument of a complex number $z=a+ib$ is given by,
$\arg z={{\tan }^{-1}}\dfrac{b}{a}\cdots \cdots \left( i \right)$,
Where $\arg z$ is the argument of $z$.
In the given question, we will also use some properties of argument of complex numbers which are given as below,
For two complex numbers ${{z}_{1}}$ and ${{z}_{2}}$, properties are,
$\arg {{z}_{1}}^{n}=n\arg {{z}_{1}}\cdots \cdots \left( ii \right)$,
\[\arg \left( {{z}_{1}}\times {{z}_{2}} \right)=\arg {{z}_{1}}+\arg {{z}_{2}}\cdots \cdots \left( iii \right)\],
\[\arg \left( \dfrac{{{z}_{1}}}{{{z}_{2}}} \right)=\arg {{z}_{1}}-\arg {{z}_{2}}\cdots \cdots \left( iv \right)\].
Now, the given expression in the question is,
$\dfrac{{{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}}}{-2i\left( -\sqrt{3}+i \right)}$.
So, we can write its argument as,
$\arg \left( \dfrac{{{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}}}{-2i\left( -\sqrt{3}+i \right)} \right)$
Here, applying property $\left( iv \right)$, we get,
$=\arg \left( {{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}} \right)-\arg \left( -2i\left( -\sqrt{3}+i \right) \right)$
Now, applying property $\left( iii \right)$ in both the argument terms, we get,
$\begin{align}
& =\arg {{\left( 1+i \right)}^{5}}+\arg {{\left( 1+\sqrt{3i} \right)}^{2}}-\left[ \arg \left( -2i \right)+\arg \left( -\sqrt{3}+i \right) \right] \\
& =\arg {{\left( 1+i \right)}^{5}}+\arg {{\left( 1+\sqrt{3i} \right)}^{2}}-\arg \left( -2i \right)-\arg \left( -\sqrt{3}+i \right)\cdots \cdots \left( v \right) \\
\end{align}$
Now, applying property $\left( ii \right)$ in first two terms of above expression, we get,
$=5\arg \left( 1+i \right)+2\arg \left( 1+\sqrt{3i} \right)-\arg \left( -2i \right)-\arg \left( -\sqrt{3}+i \right)$
Now, using the equation $\left( i \right)$ in $\arg \left( 1+i \right)$, we get, $a=1$ and $b=1$. Therefore,
$\arg \left( 1+i \right)={{\tan }^{-1}}\left( \dfrac{1}{1} \right)={{\tan }^{-1}}1=\dfrac{\pi }{4}$
Now, using equation $\left( i \right)$ in $\arg \left( 1+\sqrt{3i} \right)$ , we get, $a=1$ and $b=\sqrt{3}$. Therefore,
$\arg \left( 1+\sqrt{3i} \right)={{\tan }^{-1}}\left( \dfrac{\sqrt{3}}{1} \right)={{\tan }^{-1}}\sqrt{3}=\dfrac{\pi }{3}$
Now, using the equation $\left( i \right)$ in $\arg \left( -2i \right)$, we get, $a=0$ and $b=-2$. Therefore,
$\arg \left( -2i \right)={{\tan }^{-1}}\left( \dfrac{-2}{0} \right)={{\tan }^{-1}}\left( -\infty \right)=-\dfrac{\pi }{2}$
Now, using equation $\left( i \right)$ in$\arg \left( -\sqrt{3}+i \right)$ , we get, $a=-\sqrt{3}$ and $b=1$. Therefore,
$\arg \left( -\sqrt{3}+i \right)={{\tan }^{-1}}\left( \dfrac{1}{-\sqrt{3}} \right)={{\tan }^{-1}}\left( -\dfrac{1}{\sqrt{3}} \right)=\pi -\dfrac{\pi }{6}=\dfrac{5\pi }{6}$
Using the above calculated values in equation $\left( v \right)$, we get,
$\arg \left( \dfrac{{{\left( 1+i \right)}^{5}}{{\left( 1+\sqrt{3i} \right)}^{2}}}{-2i\left( -\sqrt{3}+i \right)} \right)=5\left( \dfrac{\pi }{4} \right)+2\left( \dfrac{\pi }{3} \right)-\left( -\dfrac{\pi }{2} \right)-\left( \dfrac{5\pi }{6} \right)$
$=\dfrac{5\pi }{4}+\dfrac{2\pi }{3}+\dfrac{\pi }{2}-\dfrac{5\pi }{6}$
Taking LCM of all the terms to add them, we get,
$\begin{align}
& =\dfrac{5\pi \times 3}{4\times 3}+\dfrac{2\pi \times 4}{3\times 4}+\dfrac{\pi \times 6}{2\times 6}-\dfrac{5\pi \times 2}{6\times 2} \\
& =\dfrac{15\pi }{12}+\dfrac{8\pi }{12}+\dfrac{6\pi }{12}-\dfrac{10\pi }{12} \\
& =\dfrac{15\pi +8\pi +6\pi -10\pi }{12} \\
& =\dfrac{19\pi }{12} \\
\end{align}$
But, the principal argument lies in the interval $\left( -\pi ,\pi \right)$ and tangent function is a periodic function with period $2\pi $.
Also, we can write $\dfrac{19\pi }{12}$ as, $\dfrac{24\pi -5\pi }{12}=2\pi -\dfrac{5\pi }{12}$.
Therefore, principal argument will be,
$\dfrac{5\pi }{12}$.
Hence, the required principal argument is $\dfrac{5\pi }{12}$.
Note: You can do this question in an alternative way by first solving the whole expression to bring it to the form of $a+ib$, and then use the argument formula. But that way calculation will become very long.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

