
The potential energy of mass 1 kg moving along the x- axis given by $U(x) = \left[ {\dfrac{{{x^2}}}{2} - x} \right]J$. If the total mechanical energy of a particle is 2 J, then find its maximum speed.
Answer
596.1k+ views
Hint: - An object can store energy as a result of its position. This stored energy of position is referred to as potential energy. Potential energy is the stored energy of position possessed by an object.
Formula used: - Kinetic energy = $\dfrac{1}{2}m{v^2}$.
Complete step-by-step solution -
As we know, total mechanical energy = Kinetic Energy + Potential Energy
For maximum speed, kinetic energy should be maximum and potential energy should be minimum. That is,
$U(x) = \left[ {\dfrac{{{x^2}}}{2} - x} \right]J$ should be minimum. For this, we have to differentiate the given value.
Therefore, differentiating both the sides.
$ \to \dfrac{{dU(x)}}{{dx}} = \dfrac{{d\left[ {\dfrac{{{x^2}}}{2} - x} \right]}}{{dx}}$
$ \to \dfrac{{dU(x)}}{{dx}} = \left( {\dfrac{{2x}}{2} - 1} \right)$
$ \to \dfrac{{dU(x)}}{{dx}} = \left( {x - 1} \right)$
For minimum potential energy, $\dfrac{{dU(x)}}{{dx}} = 0$
Therefore, $\dfrac{{dU(x)}}{{dx}} = \left( {x - 1} \right) = 0$
$ \to \left( {x - 1} \right) = 0$
$ \to x = 1$
Putting the value \[\left( {x = 1} \right)\] in the equation $U(x) = \left[ {\dfrac{{{x^2}}}{2} - x} \right]J$, we get
$U(x) = \left[ {\dfrac{{{1^2}}}{2} - 1} \right]J$
$U(x) = \left[ {\dfrac{{ - 1}}{2}} \right]$-----(i)
Now we know, total mechanical energy = Kinetic Energy + Potential Energy
Therefore, 2=$K.E. + \left[ {\dfrac{{ - 1}}{2}} \right]$, {its is given in the question, total mechanical energy=2adn from (i)}
$ \to K.E. = 2 + \left[ {\dfrac{1}{2}} \right]$
$ \to K.E. = \left[ {\dfrac{5}{2}} \right]$----(ii)
Also, we know $K.E. = \dfrac{1}{2}m{v^2}$----(iii)
From (ii) and (iii) we have
$\dfrac{1}{2}m{v^2} = \dfrac{5}{2}$
$ \to m{v^2} = 5$
$ \to 1 \times {v^2} = 5$ (since in the question it is given that mass = 1 kg)
\[ \to {v^2} = 5\]
$ \to v = \sqrt 5 $
Therefore, the maximum speed of particles is $\sqrt{5} \dfrac{m}{s}$.
Note: - An object's kinetic energy is the energy it retains because of its motion, and potential energy is the energy an object maintains regardless of its location relative to other objects. Total mechanical energy, therefore = kinetic energy + potential energy. To answer these kinds of problems, we must note this basic principle.
Formula used: - Kinetic energy = $\dfrac{1}{2}m{v^2}$.
Complete step-by-step solution -
As we know, total mechanical energy = Kinetic Energy + Potential Energy
For maximum speed, kinetic energy should be maximum and potential energy should be minimum. That is,
$U(x) = \left[ {\dfrac{{{x^2}}}{2} - x} \right]J$ should be minimum. For this, we have to differentiate the given value.
Therefore, differentiating both the sides.
$ \to \dfrac{{dU(x)}}{{dx}} = \dfrac{{d\left[ {\dfrac{{{x^2}}}{2} - x} \right]}}{{dx}}$
$ \to \dfrac{{dU(x)}}{{dx}} = \left( {\dfrac{{2x}}{2} - 1} \right)$
$ \to \dfrac{{dU(x)}}{{dx}} = \left( {x - 1} \right)$
For minimum potential energy, $\dfrac{{dU(x)}}{{dx}} = 0$
Therefore, $\dfrac{{dU(x)}}{{dx}} = \left( {x - 1} \right) = 0$
$ \to \left( {x - 1} \right) = 0$
$ \to x = 1$
Putting the value \[\left( {x = 1} \right)\] in the equation $U(x) = \left[ {\dfrac{{{x^2}}}{2} - x} \right]J$, we get
$U(x) = \left[ {\dfrac{{{1^2}}}{2} - 1} \right]J$
$U(x) = \left[ {\dfrac{{ - 1}}{2}} \right]$-----(i)
Now we know, total mechanical energy = Kinetic Energy + Potential Energy
Therefore, 2=$K.E. + \left[ {\dfrac{{ - 1}}{2}} \right]$, {its is given in the question, total mechanical energy=2adn from (i)}
$ \to K.E. = 2 + \left[ {\dfrac{1}{2}} \right]$
$ \to K.E. = \left[ {\dfrac{5}{2}} \right]$----(ii)
Also, we know $K.E. = \dfrac{1}{2}m{v^2}$----(iii)
From (ii) and (iii) we have
$\dfrac{1}{2}m{v^2} = \dfrac{5}{2}$
$ \to m{v^2} = 5$
$ \to 1 \times {v^2} = 5$ (since in the question it is given that mass = 1 kg)
\[ \to {v^2} = 5\]
$ \to v = \sqrt 5 $
Therefore, the maximum speed of particles is $\sqrt{5} \dfrac{m}{s}$.
Note: - An object's kinetic energy is the energy it retains because of its motion, and potential energy is the energy an object maintains regardless of its location relative to other objects. Total mechanical energy, therefore = kinetic energy + potential energy. To answer these kinds of problems, we must note this basic principle.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

What is the nature of force between two parallel conductors class 11 physics CBSE

Whiptails disease in cauliflower is noted due to deficiency class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

