
The positive root of the equation $\left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - 2\left( {\sqrt {50} - \sqrt {14} } \right) = 0$
A) $\dfrac{{\sqrt {26} }}{{\sqrt {14} }}$
B) $\sqrt {200} - \sqrt {56} $
C) $\dfrac{{5\sqrt 2 - 14}}{9}$
D) $\dfrac{{10}}{{\sqrt {200} - \sqrt {56} }}$
Answer
591.9k+ views
Hint: First we will compare the given quadratic equation with the general quadratic equation $a{x^2} + bx + c = 0$ to get the values of a, b, c. Then we will apply the quadratic formula for a quadratic equation $a{x^2} + bx + c = 0$ i.e. \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] to get both the roots. Out of the two roots, we will select the positive root as our answer.
Complete step by step solution:
For a quadratic equation, $a{x^2} + bx + c = 0$, by quadratic formula, we have:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Comparing, the above equation $\left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - 2\left( {\sqrt {50} - \sqrt {14} } \right) = 0$with $a{x^2} + bx + c = 0$
We can see that, $a = \sqrt {200} + \sqrt {56} $
$b = 10$ and $c = - 2\left( {\sqrt {50} - \sqrt {14} } \right)$
Now, \[{b^2} = {\left( {10} \right)^2} = 100\]
And, \[4ac = 4\left( {\sqrt {200} + \sqrt {56} } \right)\left( { - 2\left( {\sqrt {50} - \sqrt {14} } \right)} \right)\]
$\Rightarrow $4ac = - 8\left( {\sqrt {200} + \sqrt {56} } \right)\left( {\sqrt {50} - \sqrt {14} } \right)\]
$\Rightarrow $\[4ac = - 8\left( {2\sqrt {50} + 2\sqrt {14} } \right)\left( {\sqrt {50} - \sqrt {14} } \right)\]
$\Rightarrow $\[4ac = - 16\left( {\sqrt {50} + \sqrt {14} } \right)\left( {\sqrt {50} - \sqrt {14} } \right)\]
Now, we know that $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
$\Rightarrow $\[4ac = - 16\left( {\sqrt {50} + \sqrt {14} } \right)\left( {\sqrt {50} - \sqrt {14} } \right) = - 16\left( {{{\left( {\sqrt {50} } \right)}^2} - {{\left( {\sqrt {14} } \right)}^2}} \right)\]
So, \[4ac = - 16\left( {50 - 14} \right) = - 576\]
Now, roots of the equation:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
$\Rightarrow $ \[x = \dfrac{{ - 10 \pm \sqrt {100 - \left( { - 576} \right)} }}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
$\Rightarrow $\[x = \dfrac{{ - 10 \pm \sqrt {676} }}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
$\Rightarrow $ \[x = \dfrac{{ - 10 \pm 26}}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
$\Rightarrow $ \[x = \dfrac{{ - 36}}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}},x = \dfrac{{16}}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
$\Rightarrow $\[x = \dfrac{{ - 18}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}},x = \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
Now, the positive roots is \[x = \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
Now, rationalizing the denominator of the root, as no option matches with this form,
$\Rightarrow $\[x = \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}} = \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}} \times \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {\sqrt {200} - \sqrt {56} } \right)}}\]
$\Rightarrow $\[x = \dfrac{{8\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {\sqrt {200} + \sqrt {56} } \right)\left( {\sqrt {200} - \sqrt {56} } \right)}}\]
Now, we know that, $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$\Rightarrow $\[x = \dfrac{{8\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {200 - 56} \right)}}\]
$\Rightarrow $\[x = \dfrac{{8\left( {\sqrt {200} - \sqrt {56} } \right)}}{{144}} = \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)}}{{18}}\]
$\Rightarrow $\[x = \dfrac{{\left( {10\sqrt 2 - 2\sqrt {14} } \right)}}{{18}}\]
$\Rightarrow $\[x = \dfrac{{5\sqrt 2 - \sqrt {14} }}{9}\]
Hence, the positive root of the equation is \[\dfrac{{5\sqrt 2 - \sqrt {14} }}{9}\], so option C is correct.
Note: Students must remember the quadratic formula. Also, after getting the root from the quadratic formula, they must rationalize the denominator or numerator part whichever is irrational to get the correct answer. If there is an option of none of the above, select it if you are sure none of the option is equal to the calculated root. Another approach towards solving the question can be by factorization method.
$\left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - 2\left( {\sqrt {50} - \sqrt {14} } \right) = 0$
$ $\Rightarrow $ \left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - \left( {2\sqrt {50} - 2\sqrt {14} } \right) = 0$
$ $\Rightarrow $ \left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - \left( {\sqrt {200} - \sqrt {56} } \right) = 0$
$ $\Rightarrow $ {x^2} + \dfrac{{10}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}x - \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}} = 0$
$ $\Rightarrow $ {x^2} + \dfrac{{18}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}x - \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}x - \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}} = 0$
$ $\Rightarrow $ x\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) - \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\left( {x + \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8}} \right) = 0$
Now,
$\dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8} = \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)\left( {\sqrt {200} + \sqrt {56} } \right)}}{{8\left( {\sqrt {200} + \sqrt {56} } \right)}}$
Now, we know that, $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$ $\Rightarrow $ \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8} = \dfrac{{{{\left( {\sqrt {200} } \right)}^2} - {{\left( {\sqrt {56} } \right)}^2}}}{{8\left( {\sqrt {200} + \sqrt {56} } \right)}}$
$ $\Rightarrow $ \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8} = \dfrac{{200 - 56}}{{8\left( {\sqrt {200} + \sqrt {56} } \right)}}$
$ $\Rightarrow $ \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8} = \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}$
So,
$x\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) - \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\left( {x + \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8}} \right) = 0$
Becomes,
$x\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) - \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) = 0$
\[ $\Rightarrow $ \left( {x - \dfrac{8}{{\sqrt {200} + \sqrt {56} }}} \right)\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) = 0\]
Thus, the roots of the above equations are,
\[x = \dfrac{8}{{\sqrt {200} + \sqrt {56} }},x = \dfrac{{ - 18}}{{\sqrt {200} + \sqrt {56} }}\]
Complete step by step solution:
For a quadratic equation, $a{x^2} + bx + c = 0$, by quadratic formula, we have:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
Comparing, the above equation $\left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - 2\left( {\sqrt {50} - \sqrt {14} } \right) = 0$with $a{x^2} + bx + c = 0$
We can see that, $a = \sqrt {200} + \sqrt {56} $
$b = 10$ and $c = - 2\left( {\sqrt {50} - \sqrt {14} } \right)$
Now, \[{b^2} = {\left( {10} \right)^2} = 100\]
And, \[4ac = 4\left( {\sqrt {200} + \sqrt {56} } \right)\left( { - 2\left( {\sqrt {50} - \sqrt {14} } \right)} \right)\]
$\Rightarrow $4ac = - 8\left( {\sqrt {200} + \sqrt {56} } \right)\left( {\sqrt {50} - \sqrt {14} } \right)\]
$\Rightarrow $\[4ac = - 8\left( {2\sqrt {50} + 2\sqrt {14} } \right)\left( {\sqrt {50} - \sqrt {14} } \right)\]
$\Rightarrow $\[4ac = - 16\left( {\sqrt {50} + \sqrt {14} } \right)\left( {\sqrt {50} - \sqrt {14} } \right)\]
Now, we know that $\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$
$\Rightarrow $\[4ac = - 16\left( {\sqrt {50} + \sqrt {14} } \right)\left( {\sqrt {50} - \sqrt {14} } \right) = - 16\left( {{{\left( {\sqrt {50} } \right)}^2} - {{\left( {\sqrt {14} } \right)}^2}} \right)\]
So, \[4ac = - 16\left( {50 - 14} \right) = - 576\]
Now, roots of the equation:
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
$\Rightarrow $ \[x = \dfrac{{ - 10 \pm \sqrt {100 - \left( { - 576} \right)} }}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
$\Rightarrow $\[x = \dfrac{{ - 10 \pm \sqrt {676} }}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
$\Rightarrow $ \[x = \dfrac{{ - 10 \pm 26}}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
$\Rightarrow $ \[x = \dfrac{{ - 36}}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}},x = \dfrac{{16}}{{2\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
$\Rightarrow $\[x = \dfrac{{ - 18}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}},x = \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
Now, the positive roots is \[x = \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\]
Now, rationalizing the denominator of the root, as no option matches with this form,
$\Rightarrow $\[x = \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}} = \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}} \times \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {\sqrt {200} - \sqrt {56} } \right)}}\]
$\Rightarrow $\[x = \dfrac{{8\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {\sqrt {200} + \sqrt {56} } \right)\left( {\sqrt {200} - \sqrt {56} } \right)}}\]
Now, we know that, $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$\Rightarrow $\[x = \dfrac{{8\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {200 - 56} \right)}}\]
$\Rightarrow $\[x = \dfrac{{8\left( {\sqrt {200} - \sqrt {56} } \right)}}{{144}} = \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)}}{{18}}\]
$\Rightarrow $\[x = \dfrac{{\left( {10\sqrt 2 - 2\sqrt {14} } \right)}}{{18}}\]
$\Rightarrow $\[x = \dfrac{{5\sqrt 2 - \sqrt {14} }}{9}\]
Hence, the positive root of the equation is \[\dfrac{{5\sqrt 2 - \sqrt {14} }}{9}\], so option C is correct.
Note: Students must remember the quadratic formula. Also, after getting the root from the quadratic formula, they must rationalize the denominator or numerator part whichever is irrational to get the correct answer. If there is an option of none of the above, select it if you are sure none of the option is equal to the calculated root. Another approach towards solving the question can be by factorization method.
$\left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - 2\left( {\sqrt {50} - \sqrt {14} } \right) = 0$
$ $\Rightarrow $ \left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - \left( {2\sqrt {50} - 2\sqrt {14} } \right) = 0$
$ $\Rightarrow $ \left( {\sqrt {200} + \sqrt {56} } \right){x^2} + 10x - \left( {\sqrt {200} - \sqrt {56} } \right) = 0$
$ $\Rightarrow $ {x^2} + \dfrac{{10}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}x - \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}} = 0$
$ $\Rightarrow $ {x^2} + \dfrac{{18}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}x - \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}x - \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)}}{{\left( {\sqrt {200} + \sqrt {56} } \right)}} = 0$
$ $\Rightarrow $ x\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) - \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\left( {x + \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8}} \right) = 0$
Now,
$\dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8} = \dfrac{{\left( {\sqrt {200} - \sqrt {56} } \right)\left( {\sqrt {200} + \sqrt {56} } \right)}}{{8\left( {\sqrt {200} + \sqrt {56} } \right)}}$
Now, we know that, $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
$ $\Rightarrow $ \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8} = \dfrac{{{{\left( {\sqrt {200} } \right)}^2} - {{\left( {\sqrt {56} } \right)}^2}}}{{8\left( {\sqrt {200} + \sqrt {56} } \right)}}$
$ $\Rightarrow $ \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8} = \dfrac{{200 - 56}}{{8\left( {\sqrt {200} + \sqrt {56} } \right)}}$
$ $\Rightarrow $ \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8} = \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}$
So,
$x\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) - \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\left( {x + \dfrac{{\sqrt {200} - \sqrt {56} }}{{\sqrt {200} + \sqrt {56} }} \times \dfrac{{\sqrt {200} + \sqrt {56} }}{8}} \right) = 0$
Becomes,
$x\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) - \dfrac{8}{{\left( {\sqrt {200} + \sqrt {56} } \right)}}\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) = 0$
\[ $\Rightarrow $ \left( {x - \dfrac{8}{{\sqrt {200} + \sqrt {56} }}} \right)\left( {x + \dfrac{{18}}{{\sqrt {200} + \sqrt {56} }}} \right) = 0\]
Thus, the roots of the above equations are,
\[x = \dfrac{8}{{\sqrt {200} + \sqrt {56} }},x = \dfrac{{ - 18}}{{\sqrt {200} + \sqrt {56} }}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

