
The polynomial $ x+1 $ is a factor of $ {{x}^{n}}+1 $ only if \[\]
A $ n $ is an odd integer \[\]
B. $ n $ is an even integer \[\]
C. $ n $ is a negative integer \[\]
D. $ n $ is a positive integer\[\]
Answer
569.1k+ views
Hint: We recall the Euclidean division of polynomial $ p\left( x \right)=q\left( x \right)d\left( x \right)+r\left( x \right) $ where the divisor polynomial $ d\left( x \right) $ can be a factor if and only if $ r\left( x \right)=0 $ . We take $ p\left( x \right)={{x}^{n}}+1 $ and $ d\left( x \right)=x+1 $ d and have $ p\left( x \right)=\left( x+1 \right)q\left( x \right) $ . We put $ x=-1 $ to find $ p\left( -1 \right)=0 $ . We find for what values of $ n $ , $ p\left( -1 \right)={{\left( -1 \right)}^{n}}+1=0 $ \[\]
Complete step by step answer:
We know that when we divide a divided polynomial $ p\left( x \right) $ with degree $ n $ by some divisor polynomial $ d\left( x \right) $ with degree $ m\le n $ then we get the quotient polynomial $ q\left( x \right) $ of degree $ n-m $ and the remainder polynomial as $ r\left( x \right) $ of degree either equal to $ m $ or $ m-1 $ .We use Euclidean division of polynomial and have;
\[p\left( x \right)=q\left( x \right)d\left( x \right)+r\left( x \right)\]
If the remainder polynomial $ r\left( x \right)=0 $ then $ d\left( x \right) $ becomes a factor of $ \left( x \right) $ . Let us assume $ p\left( x \right)={{x}^{n}}+1 $ and $ d\left( x \right)=x+1 $ . Since we are given $ d\left( x \right)=x+1 $ is factor of $ p\left( x \right)={{x}^{n}}+1 $ then we have $ r\left( x \right)=0 $ and ;
\[\begin{align}
& p\left( x \right)=q\left( x \right)d\left( x \right) \\
& \Rightarrow p\left( x \right)=\left( x+1 \right)q\left( x \right) \\
\end{align}\]
Let us put $ x=-1 $ in the above step to have;
\[\Rightarrow p\left( x \right)=0\cdot q\left( x \right)=0\]
So $ x=-1 $ is a zero of the polynomial $ p\left( x \right)={{x}^{n}}+1 $ . So we have;
$ p\left( -1 \right)={{\left( -1 \right)}^{n}}+1=0 $
We see in above equation that the only way we can make $ p\left( -1 \right)={{\left( -1 \right)}^{n}}+1=0 $ when $ {{\left( -1 \right)}^{n}}=-1. $ We know that $ {{\left( -1 \right)}^{x}}=1 $ if $ n $ is even and $ {{\left( -1 \right)}^{n}}=-1 $ if $ n $ is odd. So $ n $ has to be odd and hence the correct option is A.\[\]
If we take $ n $ as even we get $ p\left( -1 \right)=1+1=2\ne 0 $ and hence option B is incorrect. Since $ n $ cannot be negative and positive integers include both even and odd numbers, option C and D are not correct. So only correct option is A. \[\]
Note:
We can alternatively conclude $ x=-1 $ is a zero of $ p\left( x \right) $ from the factor theorem which states that a polynomial $ p\left( x \right) $ has a factor $ \left( x-a \right) $ if and only if $ p\left( a \right)=0 $ in other words $ a $ is a zero of $ p\left( x \right) $ . We can alternatively solve using the algebraic identity for odd $ n $ $ {{a}^{n}}+{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+...-a{{b}^{n-2}}+{{b}^{n-1}} \right) $ with $ a=x,b=1 $ . We shall find that $ \left( {{1}^{n}}+{{x}^{n}} \right)=\left( 1+x \right)\left( 1-x+{{x}^{2}}+...+{{x}^{n-1}} \right) $ . Since $ 1-x+{{x}^{2}}+...+{{x}^{n-1}}\ne 0 $ when $ x=-1 $ that makes $ x+1 $ a factor of $ {{x}^{n}}+1 $ with odd $ n $ .
Complete step by step answer:
We know that when we divide a divided polynomial $ p\left( x \right) $ with degree $ n $ by some divisor polynomial $ d\left( x \right) $ with degree $ m\le n $ then we get the quotient polynomial $ q\left( x \right) $ of degree $ n-m $ and the remainder polynomial as $ r\left( x \right) $ of degree either equal to $ m $ or $ m-1 $ .We use Euclidean division of polynomial and have;
\[p\left( x \right)=q\left( x \right)d\left( x \right)+r\left( x \right)\]
If the remainder polynomial $ r\left( x \right)=0 $ then $ d\left( x \right) $ becomes a factor of $ \left( x \right) $ . Let us assume $ p\left( x \right)={{x}^{n}}+1 $ and $ d\left( x \right)=x+1 $ . Since we are given $ d\left( x \right)=x+1 $ is factor of $ p\left( x \right)={{x}^{n}}+1 $ then we have $ r\left( x \right)=0 $ and ;
\[\begin{align}
& p\left( x \right)=q\left( x \right)d\left( x \right) \\
& \Rightarrow p\left( x \right)=\left( x+1 \right)q\left( x \right) \\
\end{align}\]
Let us put $ x=-1 $ in the above step to have;
\[\Rightarrow p\left( x \right)=0\cdot q\left( x \right)=0\]
So $ x=-1 $ is a zero of the polynomial $ p\left( x \right)={{x}^{n}}+1 $ . So we have;
$ p\left( -1 \right)={{\left( -1 \right)}^{n}}+1=0 $
We see in above equation that the only way we can make $ p\left( -1 \right)={{\left( -1 \right)}^{n}}+1=0 $ when $ {{\left( -1 \right)}^{n}}=-1. $ We know that $ {{\left( -1 \right)}^{x}}=1 $ if $ n $ is even and $ {{\left( -1 \right)}^{n}}=-1 $ if $ n $ is odd. So $ n $ has to be odd and hence the correct option is A.\[\]
If we take $ n $ as even we get $ p\left( -1 \right)=1+1=2\ne 0 $ and hence option B is incorrect. Since $ n $ cannot be negative and positive integers include both even and odd numbers, option C and D are not correct. So only correct option is A. \[\]
Note:
We can alternatively conclude $ x=-1 $ is a zero of $ p\left( x \right) $ from the factor theorem which states that a polynomial $ p\left( x \right) $ has a factor $ \left( x-a \right) $ if and only if $ p\left( a \right)=0 $ in other words $ a $ is a zero of $ p\left( x \right) $ . We can alternatively solve using the algebraic identity for odd $ n $ $ {{a}^{n}}+{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+...-a{{b}^{n-2}}+{{b}^{n-1}} \right) $ with $ a=x,b=1 $ . We shall find that $ \left( {{1}^{n}}+{{x}^{n}} \right)=\left( 1+x \right)\left( 1-x+{{x}^{2}}+...+{{x}^{n-1}} \right) $ . Since $ 1-x+{{x}^{2}}+...+{{x}^{n-1}}\ne 0 $ when $ x=-1 $ that makes $ x+1 $ a factor of $ {{x}^{n}}+1 $ with odd $ n $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

