
The polar equation of the line passing through \[\left( {4,\dfrac{{2\pi }}{2}} \right)\] and perpendicular to the line joining origin to this point is
Answer
567k+ views
Hint: We will locate the point on the graph. We will sketch the required line according to the conditions given in the question. We will convert the equation of the line into the polar form using the formulas for converting rectangular coordinates to polar coordinates.
Formulas used:
We will use following formulas for converting rectangular coordinates to polar coordinates:
\[x = r\cos \theta \]
\[y = r\sin \theta \]
\[\sqrt {{x^2} + {y^2}} = r\]
Complete step-by-step answer:
The point \[\left( {4,\dfrac{{2\pi }}{2}} \right)\] is equivalent to the point \[\left( {4,\pi } \right)\]. The modulus of the point represented by \[\left( {4,\dfrac{{2\pi }}{2}} \right)\] is 4 and it makes an angle of \[\pi \] radians with the positive \[x\] - axis. We will locate this point on the graph:
The point Z in red colour represents the required point. The point Z has value \[\left( {4,\pi } \right)\] in polar coordinates and value \[\left( { - 4,0} \right)\] in rectangular coordinates.
We can see from the figure that the line that is joining the point to the origin is the \[x\] - axis. We need a line that is perpendicular to the line joining the origin to this point i.e. our line will be perpendicular to the \[x\] - axis; this means that our line is parallel to the \[y\] - axis.
We need a line that passes through the point \[\left( { - 4,0} \right)\]and is parallel to the \[y\] - axis. We will represent this condition on the graph:
We can see from the graph that the required line is \[x = - 4\].
We will convert the notation of this line to polar coordinates. We will substitute \[ - 4\] for \[x\] in the 1st formula:
\[r\cos \theta = - 4\]
$\therefore $ The polar equation of the line passing through \[\left( {4,\dfrac{{2\pi }}{2}} \right)\] and perpendicular to the line joining the origin to this point is \[r\cos \theta = - 4\].
Note: We can also find the polar equation of the line using the formula \[r\cos \left( {\theta - \alpha } \right) = p\] where \[p\] is the length of the normal to the line from the origin and \[\alpha \] is the angle that the line makes with the polar axis. We will substitute 4 for \[p\] and \[\pi \] for \[\alpha \] in the formula for the polar equation of a line:
\[r\cos \left( {\theta - \pi } \right) = 4\].
We know that \[\cos \left( {\theta - \pi } \right) = - \cos \theta \]:
\[\begin{array}{c} \Rightarrow - r\cos \theta = 4\\ \Rightarrow r\cos \theta = - 4\end{array}\]
Formulas used:
We will use following formulas for converting rectangular coordinates to polar coordinates:
\[x = r\cos \theta \]
\[y = r\sin \theta \]
\[\sqrt {{x^2} + {y^2}} = r\]
Complete step-by-step answer:
The point \[\left( {4,\dfrac{{2\pi }}{2}} \right)\] is equivalent to the point \[\left( {4,\pi } \right)\]. The modulus of the point represented by \[\left( {4,\dfrac{{2\pi }}{2}} \right)\] is 4 and it makes an angle of \[\pi \] radians with the positive \[x\] - axis. We will locate this point on the graph:
The point Z in red colour represents the required point. The point Z has value \[\left( {4,\pi } \right)\] in polar coordinates and value \[\left( { - 4,0} \right)\] in rectangular coordinates.
We can see from the figure that the line that is joining the point to the origin is the \[x\] - axis. We need a line that is perpendicular to the line joining the origin to this point i.e. our line will be perpendicular to the \[x\] - axis; this means that our line is parallel to the \[y\] - axis.
We need a line that passes through the point \[\left( { - 4,0} \right)\]and is parallel to the \[y\] - axis. We will represent this condition on the graph:
We can see from the graph that the required line is \[x = - 4\].
We will convert the notation of this line to polar coordinates. We will substitute \[ - 4\] for \[x\] in the 1st formula:
\[r\cos \theta = - 4\]
$\therefore $ The polar equation of the line passing through \[\left( {4,\dfrac{{2\pi }}{2}} \right)\] and perpendicular to the line joining the origin to this point is \[r\cos \theta = - 4\].
Note: We can also find the polar equation of the line using the formula \[r\cos \left( {\theta - \alpha } \right) = p\] where \[p\] is the length of the normal to the line from the origin and \[\alpha \] is the angle that the line makes with the polar axis. We will substitute 4 for \[p\] and \[\pi \] for \[\alpha \] in the formula for the polar equation of a line:
\[r\cos \left( {\theta - \pi } \right) = 4\].
We know that \[\cos \left( {\theta - \pi } \right) = - \cos \theta \]:
\[\begin{array}{c} \Rightarrow - r\cos \theta = 4\\ \Rightarrow r\cos \theta = - 4\end{array}\]
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

