
The points which trisect the line segment joining the points \[\left( 0,0 \right)\] and \[\left( 9,12 \right)\] are
(A) \[\left( 3,4 \right)\]
(B) \[\left( 8,6 \right)\]
(C) \[\left( 6,8 \right)\]
(D) \[\left( 4,0 \right)\]
Answer
582.9k+ views
Hint: Assume the coordinate of the point C be \[\left( {{x}_{1}},{{y}_{1}} \right)\] and the coordinate of the point D be \[\left( {{x}_{2}},{{y}_{2}} \right)\] . The point C is the midpoint of the line joining the points A and D, and the point D is the midpoint of the line joining the points C and B. We know the formula for the midpoint of the line joining two points having coordinates \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] , \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] . Use this formula and get the coordinates of the points C and D. Then, compare the coordinates of the points C and D with \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] respectively. Now, solve it further and get the values of \[{{x}_{1}}\] , \[{{y}_{1}}\] , \[{{x}_{2}}\] , and \[{{y}_{2}}\] .
Complete step-by-step answer:
According to the question, we have the coordinates of two points which are \[\left( 0,0 \right)\] and \[\left( 9,12 \right)\] .
The coordinate of the point A = \[\left( 0,0 \right)\] ………………..……(1)
The coordinate of the point B = \[\left( 9,12 \right)\] ……………………(2)
For the line AB to be divided into 3 equal parts we need two more points.
Let the coordinate of the point C be \[\left( {{x}_{1}},{{y}_{1}} \right)\] and the coordinate of the point D be \[\left( {{x}_{2}},{{y}_{2}} \right)\] .
The coordinate of the point C = \[\left( {{x}_{1}},{{y}_{1}} \right)\] ………………………..(3)
The coordinate of the point D = \[\left( {{x}_{2}},{{y}_{2}} \right)\] ………………………(4)
The points C and D are trisecting the line AB. We can say that AC is equal to CD and CD is equal to DB. So,
AC = CD = DB …………………………(5)
We know the formula for the midpoint of the line joining two points having coordinates \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] , \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] ………………………(6)
For the line AD, we have, AC = CD. It means that the point C \[\left( {{x}_{1}},{{y}_{1}} \right)\] is the midpoint of the line joining the points A \[\left( 0,0 \right)\] and D \[\left( {{x}_{2}},{{y}_{2}} \right)\] .
Now, using equation (6) to obtain the midpoint of the line AD.
\[\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{0+{{x}_{2}}}{2},\dfrac{0+{{y}_{2}}}{2} \right)\]
\[\Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{{{x}_{2}}}{2},\dfrac{{{y}_{2}}}{2} \right)\] ……………………..(7)
Comparing the LHS and RHS of equation (7), we get \[{{x}_{1}}=\dfrac{{{x}_{2}}}{2}\] and \[{{y}_{1}}=\dfrac{{{y}_{2}}}{2}\] .
Now, solving
\[{{x}_{1}}=\dfrac{{{x}_{2}}}{2}\]
\[\Rightarrow 2{{x}_{1}}={{x}_{2}}\] ……………….(8)
Now, solving
\[{{y}_{1}}=\dfrac{{{y}_{2}}}{2}\]
\[\Rightarrow 2{{y}_{1}}={{y}_{2}}\] ……………….(9)
For the line CB, we have, CD = DB. It means that the point D \[\left( {{x}_{2}},{{y}_{2}} \right)\] is the midpoint of the line joining the points C \[\left( {{x}_{1}},{{y}_{1}} \right)\] and B \[\left( 9,12 \right)\] .
Now, using equation (6) to obtain the midpoint of the line CB.
\[\left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{{{x}_{1}}+9}{2},\dfrac{{{y}_{1}}+12}{2} \right)\] ……………………..(10)
Comparing the LHS and RHS of equation (10), we get \[{{x}_{2}}=\dfrac{{{x}_{1}}+9}{2}\] and \[{{y}_{2}}=\dfrac{{{y}_{1}}+12}{2}\] .
Now, solving
\[{{x}_{2}}=\dfrac{{{x}_{1}}+9}{2}\]
\[\Rightarrow 2{{x}_{2}}={{x}_{1}}+9\] ……………….(11)
Now, putting the value of \[{{x}_{2}}\] from equation (8) in equation (10), we get
\[\begin{align}
& \Rightarrow 2\left( 2{{x}_{1}} \right)={{x}_{1}}+9 \\
& \Rightarrow 4{{x}_{1}}={{x}_{1}}+9 \\
& \Rightarrow 4{{x}_{1}}-{{x}_{1}}=9 \\
& \Rightarrow 3{{x}_{1}}=9 \\
\end{align}\]
\[\Rightarrow {{x}_{1}}=3\] …………………….(12)
Putting the value of \[{{x}_{1}}\] in equation (8), we get
\[\begin{align}
& \Rightarrow 2{{x}_{1}}={{x}_{2}} \\
& \Rightarrow 2.3={{x}_{2}} \\
\end{align}\]
\[\Rightarrow 6={{x}_{2}}\] ……………………….(13)
Now, solving
\[{{y}_{2}}=\dfrac{{{y}_{1}}+12}{2}\]
\[\Rightarrow 2{{y}_{2}}={{y}_{1}}+12\] ……………….(14)
Now, putting the value of \[{{y}_{2}}\] from equation (9) in equation (14), we get
\[\begin{align}
& \Rightarrow 2\left( 2{{y}_{1}} \right)={{y}_{1}}+12 \\
& \Rightarrow 4{{y}_{1}}={{y}_{1}}+12 \\
& \Rightarrow 4{{y}_{1}}-{{y}_{1}}=12 \\
& \Rightarrow 3{{y}_{1}}=12 \\
\end{align}\]
\[\Rightarrow {{y}_{1}}=4\] …………………..(15)
Putting the value of \[{{y}_{1}}\] in equation (8), we get
\[\begin{align}
& \Rightarrow 2{{y}_{1}}={{y}_{2}} \\
& \Rightarrow 2.4={{y}_{2}} \\
\end{align}\]
\[\Rightarrow 8={{y}_{2}}\] ………………..(16)
From equation (12), equation (13), equation (15), and equation (16), we have the values of \[{{x}_{1}}\] , \[{{y}_{1}}\] , \[{{x}_{2}}\] , and \[{{y}_{2}}\] .
The coordinate of the point C = \[\left( {{x}_{1}},{{y}_{1}} \right)\] = \[\left( 3,4 \right)\] .
The coordinate of the point D = \[\left( {{x}_{2}},{{y}_{2}} \right)\] = \[\left( 6,8 \right)\] .
Hence, the correct option is (C) and (D).
Note: We can also solve this question by using section formula.
We know the formula that the coordinate of a point which divides the line joining two point
\[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] in the ratio m:n is, \[\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)\] ……………….(1)
Let the coordinate of the point C be \[\left( {{x}_{1}},{{y}_{1}} \right)\] and the coordinate of the point D be \[\left( {{x}_{2}},{{y}_{2}} \right)\] .
The coordinate of the point C = \[\left( {{x}_{1}},{{y}_{1}} \right)\] ………………………..(2)
The coordinate of the point D = \[\left( {{x}_{2}},{{y}_{2}} \right)\] ………………………(3)
In the figure we can see that AC = CD = DB. So, we can say that the point C \[\left( {{x}_{1}},{{y}_{1}} \right)\] is dividing the line AB ratio 1:2 and the point D \[\left( {{x}_{2}},{{y}_{2}} \right)\]is dividing the line AB in the ratio 2:1.
The point C \[\left( {{x}_{1}},{{y}_{1}} \right)\] is dividing the line joining the points A \[\left( 0,0 \right)\] and B \[\left( 9,12 \right)\] in the ratio 1:2.
Using, equation (1), we can get the coordinates of the point C \[\left( {{x}_{1}},{{y}_{1}} \right)\] .
\[\begin{align}
& \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{1\times 9+2\times 0}{1+2},\dfrac{1\times 12+2\times 0}{1+2} \right) \\
& \Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{9}{3},\dfrac{12}{3} \right) \\
& \Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( 3,4 \right) \\
\end{align}\]
The point D \[\left( {{x}_{2}},{{y}_{2}} \right)\] is dividing the line joining the points A \[\left( 0,0 \right)\] and B \[\left( 9,12 \right)\] in the ratio 2:1.
Using, equation (1), we can get the coordinates of the point D \[\left( {{x}_{2}},{{y}_{2}} \right)\] .
\[\begin{align}
& \left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{2\times 9+1\times 0}{1+2},\dfrac{2\times 12+1\times 0}{1+2} \right) \\
& \Rightarrow \left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{18}{3},\dfrac{24}{3} \right) \\
& \Rightarrow \left( {{x}_{2}},{{y}_{2}} \right)=\left( 6,8 \right) \\
\end{align}\]
The coordinate of the point C = \[\left( {{x}_{1}},{{y}_{1}} \right)\] = \[\left( 3,4 \right)\] .
The coordinate of the point D = \[\left( {{x}_{2}},{{y}_{2}} \right)\] = \[\left( 6,8 \right)\] .
Hence, the correct option is (C) and (D).
Complete step-by-step answer:
According to the question, we have the coordinates of two points which are \[\left( 0,0 \right)\] and \[\left( 9,12 \right)\] .
The coordinate of the point A = \[\left( 0,0 \right)\] ………………..……(1)
The coordinate of the point B = \[\left( 9,12 \right)\] ……………………(2)
For the line AB to be divided into 3 equal parts we need two more points.
Let the coordinate of the point C be \[\left( {{x}_{1}},{{y}_{1}} \right)\] and the coordinate of the point D be \[\left( {{x}_{2}},{{y}_{2}} \right)\] .
The coordinate of the point C = \[\left( {{x}_{1}},{{y}_{1}} \right)\] ………………………..(3)
The coordinate of the point D = \[\left( {{x}_{2}},{{y}_{2}} \right)\] ………………………(4)
The points C and D are trisecting the line AB. We can say that AC is equal to CD and CD is equal to DB. So,
AC = CD = DB …………………………(5)
We know the formula for the midpoint of the line joining two points having coordinates \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] , \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\] ………………………(6)
For the line AD, we have, AC = CD. It means that the point C \[\left( {{x}_{1}},{{y}_{1}} \right)\] is the midpoint of the line joining the points A \[\left( 0,0 \right)\] and D \[\left( {{x}_{2}},{{y}_{2}} \right)\] .
Now, using equation (6) to obtain the midpoint of the line AD.
\[\left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{0+{{x}_{2}}}{2},\dfrac{0+{{y}_{2}}}{2} \right)\]
\[\Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{{{x}_{2}}}{2},\dfrac{{{y}_{2}}}{2} \right)\] ……………………..(7)
Comparing the LHS and RHS of equation (7), we get \[{{x}_{1}}=\dfrac{{{x}_{2}}}{2}\] and \[{{y}_{1}}=\dfrac{{{y}_{2}}}{2}\] .
Now, solving
\[{{x}_{1}}=\dfrac{{{x}_{2}}}{2}\]
\[\Rightarrow 2{{x}_{1}}={{x}_{2}}\] ……………….(8)
Now, solving
\[{{y}_{1}}=\dfrac{{{y}_{2}}}{2}\]
\[\Rightarrow 2{{y}_{1}}={{y}_{2}}\] ……………….(9)
For the line CB, we have, CD = DB. It means that the point D \[\left( {{x}_{2}},{{y}_{2}} \right)\] is the midpoint of the line joining the points C \[\left( {{x}_{1}},{{y}_{1}} \right)\] and B \[\left( 9,12 \right)\] .
Now, using equation (6) to obtain the midpoint of the line CB.
\[\left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{{{x}_{1}}+9}{2},\dfrac{{{y}_{1}}+12}{2} \right)\] ……………………..(10)
Comparing the LHS and RHS of equation (10), we get \[{{x}_{2}}=\dfrac{{{x}_{1}}+9}{2}\] and \[{{y}_{2}}=\dfrac{{{y}_{1}}+12}{2}\] .
Now, solving
\[{{x}_{2}}=\dfrac{{{x}_{1}}+9}{2}\]
\[\Rightarrow 2{{x}_{2}}={{x}_{1}}+9\] ……………….(11)
Now, putting the value of \[{{x}_{2}}\] from equation (8) in equation (10), we get
\[\begin{align}
& \Rightarrow 2\left( 2{{x}_{1}} \right)={{x}_{1}}+9 \\
& \Rightarrow 4{{x}_{1}}={{x}_{1}}+9 \\
& \Rightarrow 4{{x}_{1}}-{{x}_{1}}=9 \\
& \Rightarrow 3{{x}_{1}}=9 \\
\end{align}\]
\[\Rightarrow {{x}_{1}}=3\] …………………….(12)
Putting the value of \[{{x}_{1}}\] in equation (8), we get
\[\begin{align}
& \Rightarrow 2{{x}_{1}}={{x}_{2}} \\
& \Rightarrow 2.3={{x}_{2}} \\
\end{align}\]
\[\Rightarrow 6={{x}_{2}}\] ……………………….(13)
Now, solving
\[{{y}_{2}}=\dfrac{{{y}_{1}}+12}{2}\]
\[\Rightarrow 2{{y}_{2}}={{y}_{1}}+12\] ……………….(14)
Now, putting the value of \[{{y}_{2}}\] from equation (9) in equation (14), we get
\[\begin{align}
& \Rightarrow 2\left( 2{{y}_{1}} \right)={{y}_{1}}+12 \\
& \Rightarrow 4{{y}_{1}}={{y}_{1}}+12 \\
& \Rightarrow 4{{y}_{1}}-{{y}_{1}}=12 \\
& \Rightarrow 3{{y}_{1}}=12 \\
\end{align}\]
\[\Rightarrow {{y}_{1}}=4\] …………………..(15)
Putting the value of \[{{y}_{1}}\] in equation (8), we get
\[\begin{align}
& \Rightarrow 2{{y}_{1}}={{y}_{2}} \\
& \Rightarrow 2.4={{y}_{2}} \\
\end{align}\]
\[\Rightarrow 8={{y}_{2}}\] ………………..(16)
From equation (12), equation (13), equation (15), and equation (16), we have the values of \[{{x}_{1}}\] , \[{{y}_{1}}\] , \[{{x}_{2}}\] , and \[{{y}_{2}}\] .
The coordinate of the point C = \[\left( {{x}_{1}},{{y}_{1}} \right)\] = \[\left( 3,4 \right)\] .
The coordinate of the point D = \[\left( {{x}_{2}},{{y}_{2}} \right)\] = \[\left( 6,8 \right)\] .
Hence, the correct option is (C) and (D).
Note: We can also solve this question by using section formula.
We know the formula that the coordinate of a point which divides the line joining two point
\[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] in the ratio m:n is, \[\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)\] ……………….(1)
Let the coordinate of the point C be \[\left( {{x}_{1}},{{y}_{1}} \right)\] and the coordinate of the point D be \[\left( {{x}_{2}},{{y}_{2}} \right)\] .
The coordinate of the point C = \[\left( {{x}_{1}},{{y}_{1}} \right)\] ………………………..(2)
The coordinate of the point D = \[\left( {{x}_{2}},{{y}_{2}} \right)\] ………………………(3)
In the figure we can see that AC = CD = DB. So, we can say that the point C \[\left( {{x}_{1}},{{y}_{1}} \right)\] is dividing the line AB ratio 1:2 and the point D \[\left( {{x}_{2}},{{y}_{2}} \right)\]is dividing the line AB in the ratio 2:1.
The point C \[\left( {{x}_{1}},{{y}_{1}} \right)\] is dividing the line joining the points A \[\left( 0,0 \right)\] and B \[\left( 9,12 \right)\] in the ratio 1:2.
Using, equation (1), we can get the coordinates of the point C \[\left( {{x}_{1}},{{y}_{1}} \right)\] .
\[\begin{align}
& \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{1\times 9+2\times 0}{1+2},\dfrac{1\times 12+2\times 0}{1+2} \right) \\
& \Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( \dfrac{9}{3},\dfrac{12}{3} \right) \\
& \Rightarrow \left( {{x}_{1}},{{y}_{1}} \right)=\left( 3,4 \right) \\
\end{align}\]
The point D \[\left( {{x}_{2}},{{y}_{2}} \right)\] is dividing the line joining the points A \[\left( 0,0 \right)\] and B \[\left( 9,12 \right)\] in the ratio 2:1.
Using, equation (1), we can get the coordinates of the point D \[\left( {{x}_{2}},{{y}_{2}} \right)\] .
\[\begin{align}
& \left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{2\times 9+1\times 0}{1+2},\dfrac{2\times 12+1\times 0}{1+2} \right) \\
& \Rightarrow \left( {{x}_{2}},{{y}_{2}} \right)=\left( \dfrac{18}{3},\dfrac{24}{3} \right) \\
& \Rightarrow \left( {{x}_{2}},{{y}_{2}} \right)=\left( 6,8 \right) \\
\end{align}\]
The coordinate of the point C = \[\left( {{x}_{1}},{{y}_{1}} \right)\] = \[\left( 3,4 \right)\] .
The coordinate of the point D = \[\left( {{x}_{2}},{{y}_{2}} \right)\] = \[\left( 6,8 \right)\] .
Hence, the correct option is (C) and (D).
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Discuss the various forms of bacteria class 11 biology CBSE

