
The point $ (7,24) $ is on the terminal side of an angle in standard position, how do you determine the exact values of the six trigonometric functions of the angle?
Answer
548.7k+ views
Hint: In order to determine exact values of all six trigonometric function of the angle in the above question ,calculate $ r = \sqrt {{x^2} + {y^2}} $ where x will be 7 and y will be 24.And then find all the trigonometric ratios considering Hypotenuse as r ,opposite as 24 and adjacent as 7.
Formula:
\[
\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} \\
\cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{Opposite}}}}{{Adjacent}} \\
\cos ec\theta = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Opposite}}}} \\
sec\theta = \dfrac{{{\text{Hypotenuse}}}}{{Adjacent}} \\
\cot \theta = \dfrac{{Adjacent}}{{{\text{Opposite}}}} \\
\]
Complete step-by-step answer:
Given a point P $ (7,24) $ which is on the terminal side of an angle in standard position.
Let x be 7 and y be 24
Calculating r using formula $ r = \sqrt {{x^2} + {y^2}} $
$
r = \sqrt {{{(7)}^2} + {{(24)}^2}} \\
r = \sqrt {49 + 576} \\
r = \sqrt {625} \\
r = 25 \;
$
Hence , value of r is $ 25 $
Therefore Calculating all the trigonometric ratios as
\[
\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{y}{r} = \dfrac{{24}}{{25}} \\
\cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} = \dfrac{x}{r} = \dfrac{7}{{25}} \\
\tan \theta = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{y}{x} = \dfrac{{24}}{7} \\
\cos ec\theta = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Opposite}}}} = \dfrac{r}{y} = \dfrac{{25}}{{24}} \\
sec\theta = \dfrac{{{\text{Hypotenuse}}}}{{Adjacent}} = \dfrac{r}{x} = \dfrac{{25}}{7} \\
\cot \theta = \dfrac{{Adjacent}}{{{\text{Opposite}}}} = \dfrac{x}{y} = \dfrac{7}{{24}} \;
\]
Note: 1. Periodic Function= A function $ f(x) $ is said to be a periodic function if there exists a real number T > 0 such that $ f(x + T) = f(x) $ for all x.
If T is the smallest positive real number such that $ f(x + T) = f(x) $ for all x, then T is called the fundamental period of $ f(x) $ .
Since $ \sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $ \theta $ and n $ \in $ N.
2. Even Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = f(x) $ for all x in its domain.
Odd Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = - f(x) $ for all x in its domain.
We know that $ \sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore, $ \sin \theta $ and $ \tan \theta $ and their reciprocals, $ \cos ec\theta $ and $ \cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Formula:
\[
\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} \\
\cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} \\
\tan \theta = \dfrac{{{\text{Opposite}}}}{{Adjacent}} \\
\cos ec\theta = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Opposite}}}} \\
sec\theta = \dfrac{{{\text{Hypotenuse}}}}{{Adjacent}} \\
\cot \theta = \dfrac{{Adjacent}}{{{\text{Opposite}}}} \\
\]
Complete step-by-step answer:
Given a point P $ (7,24) $ which is on the terminal side of an angle in standard position.
Let x be 7 and y be 24
Calculating r using formula $ r = \sqrt {{x^2} + {y^2}} $
$
r = \sqrt {{{(7)}^2} + {{(24)}^2}} \\
r = \sqrt {49 + 576} \\
r = \sqrt {625} \\
r = 25 \;
$
Hence , value of r is $ 25 $
Therefore Calculating all the trigonometric ratios as
\[
\sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{y}{r} = \dfrac{{24}}{{25}} \\
\cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} = \dfrac{x}{r} = \dfrac{7}{{25}} \\
\tan \theta = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{y}{x} = \dfrac{{24}}{7} \\
\cos ec\theta = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Opposite}}}} = \dfrac{r}{y} = \dfrac{{25}}{{24}} \\
sec\theta = \dfrac{{{\text{Hypotenuse}}}}{{Adjacent}} = \dfrac{r}{x} = \dfrac{{25}}{7} \\
\cot \theta = \dfrac{{Adjacent}}{{{\text{Opposite}}}} = \dfrac{x}{y} = \dfrac{7}{{24}} \;
\]
Note: 1. Periodic Function= A function $ f(x) $ is said to be a periodic function if there exists a real number T > 0 such that $ f(x + T) = f(x) $ for all x.
If T is the smallest positive real number such that $ f(x + T) = f(x) $ for all x, then T is called the fundamental period of $ f(x) $ .
Since $ \sin \,(2n\pi + \theta ) = \sin \theta $ for all values of $ \theta $ and n $ \in $ N.
2. Even Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = f(x) $ for all x in its domain.
Odd Function – A function $ f(x) $ is said to be an even function ,if $ f( - x) = - f(x) $ for all x in its domain.
We know that $ \sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta $
Therefore, $ \sin \theta $ and $ \tan \theta $ and their reciprocals, $ \cos ec\theta $ and $ \cot \theta $ are odd functions whereas \[\cos \theta \] and its reciprocal \[\sec \theta \] are even functions.
Recently Updated Pages
State Hookes law Hence draw a typical stressstrain class 11 physics CBSE

How is phenol converted to salicylic acid class 11 chemistry CBSE

Derive an expression for the work obtained in an isothermal class 11 physics CBSE

Draw a neat and labeled diagram of water cycle in class 11 biology CBSE

The number of fourletter words that can be formed using class 11 maths CBSE

Maximum photosynthesis occurs in aBlue light bRed light class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

