
The plane 2x – 3y + 6z – 11 = 0 makes an angle $ {\sin ^{ - 1}}\left( \alpha \right) $ with the X – axis. The value of $ \alpha $ is equal to
A. $ \dfrac{2}{7} $
B. $ \dfrac{3}{7} $
C. \[\dfrac{{\sqrt 2 }}{7}\]
D. \[\dfrac{{\sqrt 3 }}{7}\]
Answer
582.3k+ views
Hint: Before attempting this question, one should have prior knowledge about the concept line and plane also remember to use \[\sin \theta = \dfrac{{\left| {\overrightarrow a .\overrightarrow n } \right|}}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow n } \right|}}\]where $ \theta $ is the angle between line and plane, use this information to approach the solution.
Complete step-by-step answer:
The given equation of the plane is 2x - 3y + 6z - 11 = 0
We know that the normal vector of the plane can be written as $ \overrightarrow n = 2\widehat i - 3\widehat j + 6\widehat k $
Since the angle is made along the X - axis, therefore, y = 0, z = 0
So, the line vector comes out to be $ \overrightarrow a = \widehat i + 0\widehat j + 0\widehat k $
The angle between the line and plane is \[\sin \theta = \dfrac{{\left| {\overrightarrow a .\overrightarrow n } \right|}}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow n } \right|}}\]
Substituting the values in the above formula we get
\[\sin \theta = \dfrac{{\left| {\left( {\widehat i + 0\widehat j + 0\widehat k} \right).\left( {2\widehat i - 3\widehat j + 6\widehat k} \right)} \right|}}{{\left| {\left( {\widehat i + 0\widehat j + 0\widehat k} \right)} \right|\left| {\left( {2\widehat i - 3\widehat j + 6\widehat k} \right)} \right|}}\]
Also we know that dot product of any two vector $ \overrightarrow p = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k $ and $ \overrightarrow q = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k $ is given as; $ \overrightarrow p .\overrightarrow q = \left( {{x_1} \times {x_2}} \right)\widehat i + \left( {{y_1} \times {y_2}} \right)\widehat j + \left( {{z_1} \times {z_2}} \right)\widehat k $
And magnitude of any vector $ \overrightarrow p = x\widehat i + y\widehat j + z\widehat k $ is given as; $ \left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} $
So, \[\sin \theta = \dfrac{{\left| {\widehat i \times 2\widehat i + 0\widehat j \times \left( { - 3\widehat j} \right) + 0\widehat k \times 6\widehat k} \right|}}{{\sqrt 1 \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 6 \right)}^2}} }}\]
$ \Rightarrow $ \[\sin \theta = \dfrac{{\left| {2\widehat i} \right|}}{{\sqrt 1 \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 6 \right)}^2}} }}\]
$ \Rightarrow $ \[\sin \theta = \dfrac{{\sqrt {{{\left( 2 \right)}^2}} }}{7} = \dfrac{2}{7}\]or \[\theta = {\sin ^{ - 1}}\left( {\dfrac{2}{7}} \right)\]
Since plane makes an angle of $ {\sin ^{ - 1}}\left( \alpha \right) $ with X-axis
Therefore, $ \theta = {\sin ^{ - 1}}\left( \alpha \right) $
Now substituting the value in the above equation, we get
$ {\sin ^{ - 1}}\left( {\dfrac{2}{7}} \right) = {\sin ^{ - 1}}\left( \alpha \right) $
$ \Rightarrow $ $ \alpha = \dfrac{2}{7} $
Therefore, the value of $ \alpha $ is equal to $ \dfrac{2}{7} $
So, the correct answer is “Option A”.
Note: In the above solution we used the basic concept of vector, always keep in mind that if a plane makes an angle with the X-axis which means the Y and Z coordinates of that line will be zero. So, as we got the equation of line at X-axis then we apply the formula of angle between plane and a line and directly apply the properties of vector like dot product of two vectors and magnitude of vector PQ is represented by $ \left| {PQ} \right| $ .
Complete step-by-step answer:
The given equation of the plane is 2x - 3y + 6z - 11 = 0
We know that the normal vector of the plane can be written as $ \overrightarrow n = 2\widehat i - 3\widehat j + 6\widehat k $
Since the angle is made along the X - axis, therefore, y = 0, z = 0
So, the line vector comes out to be $ \overrightarrow a = \widehat i + 0\widehat j + 0\widehat k $
The angle between the line and plane is \[\sin \theta = \dfrac{{\left| {\overrightarrow a .\overrightarrow n } \right|}}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow n } \right|}}\]
Substituting the values in the above formula we get
\[\sin \theta = \dfrac{{\left| {\left( {\widehat i + 0\widehat j + 0\widehat k} \right).\left( {2\widehat i - 3\widehat j + 6\widehat k} \right)} \right|}}{{\left| {\left( {\widehat i + 0\widehat j + 0\widehat k} \right)} \right|\left| {\left( {2\widehat i - 3\widehat j + 6\widehat k} \right)} \right|}}\]
Also we know that dot product of any two vector $ \overrightarrow p = {x_1}\widehat i + {y_1}\widehat j + {z_1}\widehat k $ and $ \overrightarrow q = {x_2}\widehat i + {y_2}\widehat j + {z_2}\widehat k $ is given as; $ \overrightarrow p .\overrightarrow q = \left( {{x_1} \times {x_2}} \right)\widehat i + \left( {{y_1} \times {y_2}} \right)\widehat j + \left( {{z_1} \times {z_2}} \right)\widehat k $
And magnitude of any vector $ \overrightarrow p = x\widehat i + y\widehat j + z\widehat k $ is given as; $ \left| {\overrightarrow p } \right| = \sqrt {{x^2} + {y^2} + {z^2}} $
So, \[\sin \theta = \dfrac{{\left| {\widehat i \times 2\widehat i + 0\widehat j \times \left( { - 3\widehat j} \right) + 0\widehat k \times 6\widehat k} \right|}}{{\sqrt 1 \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 6 \right)}^2}} }}\]
$ \Rightarrow $ \[\sin \theta = \dfrac{{\left| {2\widehat i} \right|}}{{\sqrt 1 \sqrt {{{\left( 2 \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 6 \right)}^2}} }}\]
$ \Rightarrow $ \[\sin \theta = \dfrac{{\sqrt {{{\left( 2 \right)}^2}} }}{7} = \dfrac{2}{7}\]or \[\theta = {\sin ^{ - 1}}\left( {\dfrac{2}{7}} \right)\]
Since plane makes an angle of $ {\sin ^{ - 1}}\left( \alpha \right) $ with X-axis
Therefore, $ \theta = {\sin ^{ - 1}}\left( \alpha \right) $
Now substituting the value in the above equation, we get
$ {\sin ^{ - 1}}\left( {\dfrac{2}{7}} \right) = {\sin ^{ - 1}}\left( \alpha \right) $
$ \Rightarrow $ $ \alpha = \dfrac{2}{7} $
Therefore, the value of $ \alpha $ is equal to $ \dfrac{2}{7} $
So, the correct answer is “Option A”.
Note: In the above solution we used the basic concept of vector, always keep in mind that if a plane makes an angle with the X-axis which means the Y and Z coordinates of that line will be zero. So, as we got the equation of line at X-axis then we apply the formula of angle between plane and a line and directly apply the properties of vector like dot product of two vectors and magnitude of vector PQ is represented by $ \left| {PQ} \right| $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

