
The period of the function $f\left( x \right)=4{{\sin }^{4}}\left( \dfrac{4x-3\pi }{6{{\pi }^{2}}} \right)+2\cos \left( \dfrac{4x-3\pi }{3{{\pi }^{2}}} \right)$
(A) $\dfrac{3{{\pi }^{2}}}{4}$
(B) $\dfrac{3{{\pi }^{3}}}{4}$
(C) $\dfrac{4{{\pi }^{2}}}{3}$
(D) $\dfrac{4{{\pi }^{3}}}{3}$
Answer
574.5k+ views
Hint: We start solving this problem by first assuming that $\dfrac{4x-3\pi }{3{{\pi }^{2}}}=2t$. Then we solve the expression by using the trigonometric identities $\cos 2\theta =1-2{{\sin }^{2}}\theta $ and $\cos 2\theta =2{{\cos }^{2}}\theta -1$ and simplify the function until we transform it into a single trigonometric function. Then we use the property of period of any function $f\left( x \right)=\cos \left( ax+b \right)$ is $\dfrac{2\pi }{a}$ to find the period of our given function.
Complete step-by-step answer:
First let us consider $\dfrac{4x-3\pi }{6{{\pi }^{2}}}=t$.
Then we get $\dfrac{4x-3\pi }{3{{\pi }^{2}}}=2t$.
Then we can write the function as $f\left( x \right)=4{{\sin }^{4}}t+2\cos 2t$
Now, let us simplify the expression $4{{\sin }^{4}}t+2\cos 2t$.
Now let us consider the formula $\cos 2\theta =1-2{{\sin }^{2}}\theta \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta $.
So, we can write our above expression as,
$\begin{align}
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\left( 1-\cos 2t \right)}^{2}}+2\cos 2t \\
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\cos }^{2}}2t-2\cos 2t+1+2\cos 2t \\
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\cos }^{2}}2t+1 \\
\end{align}$
Now let us consider the formula $\cos 2\theta =2{{\cos }^{2}}\theta -1\Rightarrow {{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2}$.
Using the above formula, we can write above equation as,
$\begin{align}
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{\cos 4t+1}{2}+1 \\
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{\cos 4t+3}{2} \\
\end{align}$
So, we can write it as
$\Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{1}{2}\cos 4t+\dfrac{3}{2}$
So, we get the function f as,
$f\left( x \right)=\dfrac{1}{2}\cos 4t+\dfrac{3}{2}$
Now, substituting the value of t, we get
$\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos 4\left( \dfrac{4x-3\pi }{6{{\pi }^{2}}} \right)+\dfrac{3}{2} \\
& \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos \dfrac{8x-6\pi }{3{{\pi }^{2}}}+\dfrac{3}{2} \\
& \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos \left( \dfrac{8x}{3{{\pi }^{2}}}-\dfrac{2}{\pi } \right)+\dfrac{3}{2} \\
\end{align}$
Now we need to find the period of the above function f(x).
We know that the period of any function $f\left( x \right)=\cos x$ is $2\pi $.
Then the period of any function $f\left( x \right)=\cos \left( ax+b \right)$ is $\dfrac{2\pi }{a}$.
Using that we can say that the period of our function f(x) is given by,
$\dfrac{2\pi }{\dfrac{8}{3{{\pi }^{2}}}}=\dfrac{2\pi \times 3{{\pi }^{2}}}{8}=\dfrac{3{{\pi }^{3}}}{4}$
So, we get the period of the function f(x) as $\dfrac{3{{\pi }^{3}}}{4}$.
So, the correct answer is “Option B”.
Note: There is a possibility of making a mistake while solving this problem by taking the period of cosx as $\dfrac{\pi }{2}$. But it is wrong. For any function sinx or cosx, the period of the function is $\pi $. Another mistake possible while solving this question is one might take the formula for cos2x as $\cos 2\theta =2{{\sin }^{2}}\theta -1$. But the actual formula is $\cos 2\theta =1-2{{\sin }^{2}}\theta $.
Complete step-by-step answer:
First let us consider $\dfrac{4x-3\pi }{6{{\pi }^{2}}}=t$.
Then we get $\dfrac{4x-3\pi }{3{{\pi }^{2}}}=2t$.
Then we can write the function as $f\left( x \right)=4{{\sin }^{4}}t+2\cos 2t$
Now, let us simplify the expression $4{{\sin }^{4}}t+2\cos 2t$.
Now let us consider the formula $\cos 2\theta =1-2{{\sin }^{2}}\theta \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta $.
So, we can write our above expression as,
$\begin{align}
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\left( 1-\cos 2t \right)}^{2}}+2\cos 2t \\
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\cos }^{2}}2t-2\cos 2t+1+2\cos 2t \\
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t={{\cos }^{2}}2t+1 \\
\end{align}$
Now let us consider the formula $\cos 2\theta =2{{\cos }^{2}}\theta -1\Rightarrow {{\cos }^{2}}\theta =\dfrac{\cos 2\theta +1}{2}$.
Using the above formula, we can write above equation as,
$\begin{align}
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{\cos 4t+1}{2}+1 \\
& \Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{\cos 4t+3}{2} \\
\end{align}$
So, we can write it as
$\Rightarrow 4{{\sin }^{4}}t+2\cos 2t=\dfrac{1}{2}\cos 4t+\dfrac{3}{2}$
So, we get the function f as,
$f\left( x \right)=\dfrac{1}{2}\cos 4t+\dfrac{3}{2}$
Now, substituting the value of t, we get
$\begin{align}
& \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos 4\left( \dfrac{4x-3\pi }{6{{\pi }^{2}}} \right)+\dfrac{3}{2} \\
& \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos \dfrac{8x-6\pi }{3{{\pi }^{2}}}+\dfrac{3}{2} \\
& \Rightarrow f\left( x \right)=\dfrac{1}{2}\cos \left( \dfrac{8x}{3{{\pi }^{2}}}-\dfrac{2}{\pi } \right)+\dfrac{3}{2} \\
\end{align}$
Now we need to find the period of the above function f(x).
We know that the period of any function $f\left( x \right)=\cos x$ is $2\pi $.
Then the period of any function $f\left( x \right)=\cos \left( ax+b \right)$ is $\dfrac{2\pi }{a}$.
Using that we can say that the period of our function f(x) is given by,
$\dfrac{2\pi }{\dfrac{8}{3{{\pi }^{2}}}}=\dfrac{2\pi \times 3{{\pi }^{2}}}{8}=\dfrac{3{{\pi }^{3}}}{4}$
So, we get the period of the function f(x) as $\dfrac{3{{\pi }^{3}}}{4}$.
So, the correct answer is “Option B”.
Note: There is a possibility of making a mistake while solving this problem by taking the period of cosx as $\dfrac{\pi }{2}$. But it is wrong. For any function sinx or cosx, the period of the function is $\pi $. Another mistake possible while solving this question is one might take the formula for cos2x as $\cos 2\theta =2{{\sin }^{2}}\theta -1$. But the actual formula is $\cos 2\theta =1-2{{\sin }^{2}}\theta $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

